Regularity of solutions on the global attractor for a semilinear damped wave equation
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2008
|
Resumo |
We consider attractors A(eta), eta epsilon [0, 1], corresponding to a singularly perturbed damped wave equation u(tt) + 2 eta A(1/2)u(t) + au(t) + Au = f (u) in H-0(1)(Omega) x L-2 (Omega), where Omega is a bounded smooth domain in R-3. For dissipative nonlinearity f epsilon C-2(R, R) satisfying vertical bar f ``(s)vertical bar <= c(1 + vertical bar s vertical bar) with some c > 0, we prove that the family of attractors {A(eta), eta >= 0} is upper semicontinuous at eta = 0 in H1+s (Omega) x H-s (Omega) for any s epsilon (0, 1). For dissipative f epsilon C-3 (R, R) satisfying lim(vertical bar s vertical bar) (->) (infinity) f ``(s)/s = 0 we prove that the attractor A(0) for the damped wave equation u(tt) + au(t) + Au = f (u) (case eta = 0) is bounded in H-4(Omega) x H-3(Omega) and thus is compact in the Holder spaces C2+mu ((Omega) over bar) x C1+mu((Omega) over bar) for every mu epsilon (0, 1/2). As a consequence of the uniform bounds we obtain that the family of attractors {A(eta), eta epsilon [0, 1]} is upper and lower semicontinuous in C2+mu ((Omega) over bar) x C1+mu ((Omega) over bar) for every mu epsilon (0, 1/2). (c) 2007 Elsevier Inc. All rights reserved. |
Identificador |
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, v.337, n.2, p.932-948, 2008 0022-247X http://producao.usp.br/handle/BDPI/28874 10.1016/j.jmaa.2007.04.051 |
Idioma(s) |
eng |
Publicador |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
Relação |
Journal of Mathematical Analysis and Applications |
Direitos |
restrictedAccess Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE |
Palavras-Chave | #singular perturbations #wave equation #global attractors #regularity #upper semicontinuity of attractors #CRITICAL NONLINEARITIES #ELASTIC-SYSTEMS #Mathematics, Applied #Mathematics |
Tipo |
article original article publishedVersion |