858 resultados para Reading epilepsy
Resumo:
Abstract Background The ongoing efforts to sequence the honey bee genome require additional initiatives to define its transcriptome. Towards this end, we employed the Open Reading frame ESTs (ORESTES) strategy to generate profiles for the life cycle of Apis mellifera workers. Results Of the 5,021 ORESTES, 35.2% matched with previously deposited Apis ESTs. The analysis of the remaining sequences defined a set of putative orthologs whose majority had their best-match hits with Anopheles and Drosophila genes. CAP3 assembly of the Apis ORESTES with the already existing 15,500 Apis ESTs generated 3,408 contigs. BLASTX comparison of these contigs with protein sets of organisms representing distinct phylogenetic clades revealed a total of 1,629 contigs that Apis mellifera shares with different taxa. Most (41%) represent genes that are in common to all taxa, another 21% are shared between metazoans (Bilateria), and 16% are shared only within the Insecta clade. A set of 23 putative genes presented a best match with human genes, many of which encode factors related to cell signaling/signal transduction. 1,779 contigs (52%) did not match any known sequence. Applying a correction factor deduced from a parallel analysis performed with Drosophila melanogaster ORESTES, we estimate that approximately half of these no-match ESTs contigs (22%) should represent Apis-specific genes. Conclusions The versatile and cost-efficient ORESTES approach produced minilibraries for honey bee life cycle stages. Such information on central gene regions contributes to genome annotation and also lends itself to cross-transcriptome comparisons to reveal evolutionary trends in insect genomes.
Resumo:
Pathology studies in epilepsy patients bring useful information for comprehending the physiopathology of various forms of epilepsy, as well as aspects related to response to treatment and long-term prognosis. These studies are usually restricted to surgical specimens obtained from patients with refractory focal epilepsies. Therefore, most of them pertain to temporal lobe epilepsy (TLE) with mesial temporal sclerosis (MTS) and malformations of cortical development (MCD), thus providing information of a selected group of patients and restricted regions of the brain. Postmortem whole brain studies are rarely performed in epilepsy patients, however they may provide extensive information on brain pathology, allowing the analysis of areas beyond the putative epileptogenic zone. In this article, we reviewed pathology studies performed in epilepsy patients with emphasis on neuropathological findings in TLE with MTS and MCD. Furthermore, we reviewed data from postmortem studies and discussed the importance of performing these studies in epilepsy populations.
Resumo:
It is clear that sudden unexpected death in epilepsy (SUDEP) is mainly a problem for people with refractory epilepsy, but our understanding of the best way to its prevention is still incomplete. Although the pharmacological treatments available for epilepsies have expanded, some antiepileptic drugs are still limited in clinical efficacy. In the present paper, we described an experience with vagus nerve stimulation (VNS) treatment by opening space and providing the opportunity to implement effective preventative maps to reduce the incidence of SUDEP in children and adolescents with refractory epilepsy.
Resumo:
OBJECTIVE: Mounting evidence suggests that the limbic system is pathologically involved in cases of psychiatric comorbidities in temporal lobe epilepsy (TLE) patients. Our objective was to develop a conceptual framework describing how neuropathological and connectivity changes might contribute to the development of psychosis and to the potential neurobiological mechanisms that cause schizophrenia-like psychosis in TLE patients. METHODS: In this review, clinical and neuropathological findings, especially brain circuitry of the limbic system, were examined together to enhance our understanding of the association between TLE and psychosis. Finally, the importance of animal models in epilepsy and psychiatric disorders was discussed. CONCLUSIONS: TLE and psychiatric symptoms coexist more frequently than chance would predict. Damage and deregulation among critical anatomical regions, such as the hippocampus, amygdala, thalamus, and the temporal, frontal and cingulate cortices, might predispose TLE brains to psychosis. Studies of the effects of kindling and injection of neuroactive substances on behavior and electrophysiological patterns may offer a model of how limbic seizures in humans increase the vulnerability of TLE patients to psychiatric symptoms.
Resumo:
[EN]Research and theory on second language reading has reached heightened dimensions in recent years. It is through reading that learners access much information concerning the target language and culture, and consequently reading is an important part of almost all language programs across stages of acquisition. The purpose of this article is to offer informed suggestions for the foreign language instructor of reading. The ideas given in this paper constitute a collaborative project that developed as part of a graduate seminar on L2 Reading and Writing taught at Washington University in St. Louis.
Resumo:
The first part of my thesis presents an overview of the different approaches used in the past two decades in the attempt to forecast epileptic seizure on the basis of intracranial and scalp EEG. Past research could reveal some value of linear and nonlinear algorithms to detect EEG features changing over different phases of the epileptic cycle. However, their exact value for seizure prediction, in terms of sensitivity and specificity, is still discussed and has to be evaluated. In particular, the monitored EEG features may fluctuate with the vigilance state and lead to false alarms. Recently, such a dependency on vigilance states has been reported for some seizure prediction methods, suggesting a reduced reliability. An additional factor limiting application and validation of most seizure-prediction techniques is their computational load. For the first time, the reliability of permutation entropy [PE] was verified in seizure prediction on scalp EEG data, contemporarily controlling for its dependency on different vigilance states. PE was recently introduced as an extremely fast and robust complexity measure for chaotic time series and thus suitable for online application even in portable systems. The capability of PE to distinguish between preictal and interictal state has been demonstrated using Receiver Operating Characteristics (ROC) analysis. Correlation analysis was used to assess dependency of PE on vigilance states. Scalp EEG-Data from two right temporal epileptic lobe (RTLE) patients and from one patient with right frontal lobe epilepsy were analysed. The last patient was included only in the correlation analysis, since no datasets including seizures have been available for him. The ROC analysis showed a good separability of interictal and preictal phases for both RTLE patients, suggesting that PE could be sensitive to EEG modifications, not visible on visual inspection, that might occur well in advance respect to the EEG and clinical onset of seizures. However, the simultaneous assessment of the changes in vigilance showed that: a) all seizures occurred in association with the transition of vigilance states; b) PE was sensitive in detecting different vigilance states, independently of seizure occurrences. Due to the limitations of the datasets, these results cannot rule out the capability of PE to detect preictal states. However, the good separability between pre- and interictal phases might depend exclusively on the coincidence of epileptic seizure onset with a transition from a state of low vigilance to a state of increased vigilance. The finding of a dependency of PE on vigilance state is an original finding, not reported in literature, and suggesting the possibility to classify vigilance states by means of PE in an authomatic and objectic way. The second part of my thesis provides the description of a novel behavioral task based on motor imagery skills, firstly introduced (Bruzzo et al. 2007), in order to study mental simulation of biological and non-biological movement in paranoid schizophrenics (PS). Immediately after the presentation of a real movement, participants had to imagine or re-enact the very same movement. By key release and key press respectively, participants had to indicate when they started and ended the mental simulation or the re-enactment, making it feasible to measure the duration of the simulated or re-enacted movements. The proportional error between duration of the re-enacted/simulated movement and the template movement were compared between different conditions, as well as between PS and healthy subjects. Results revealed a double dissociation between the mechanisms of mental simulation involved in biological and non-biologial movement simulation. While for PS were found large errors for simulation of biological movements, while being more acurate than healthy subjects during simulation of non-biological movements. Healthy subjects showed the opposite relationship, making errors during simulation of non-biological movements, but being most accurate during simulation of non-biological movements. However, the good timing precision during re-enactment of the movements in all conditions and in both groups of participants suggests that perception, memory and attention, as well as motor control processes were not affected. Based upon a long history of literature reporting the existence of psychotic episodes in epileptic patients, a longitudinal study, using a slightly modified behavioral paradigm, was carried out with two RTLE patients, one patient with idiopathic generalized epilepsy and one patient with extratemporal lobe epilepsy. Results provide strong evidence for a possibility to predict upcoming seizures in RTLE patients behaviorally. In the last part of the thesis it has been validated a behavioural strategy based on neurobiofeedback training, to voluntarily control seizures and to reduce there frequency. Three epileptic patients were included in this study. The biofeedback was based on monitoring of slow cortical potentials (SCPs) extracted online from scalp EEG. Patients were trained to produce positive shifts of SCPs. After a training phase patients were monitored for 6 months in order to validate the ability of the learned strategy to reduce seizure frequency. Two of the three refractory epileptic patients recruited for this study showed improvements in self-management and reduction of ictal episodes, even six months after the last training session.
Resumo:
Introduction: Nocturnal frontal lobe epilepsy (NFLE) is a distinct syndrome of partial epilepsy whose clinical features comprise a spectrum of paroxysmal motor manifestations of variable duration and complexity, arising from sleep. Cardiovascular changes during NFLE seizures have previously been observed, however the extent of these modifications and their relationship with seizure onset has not been analyzed in detail. Objective: Aim of present study is to evaluate NFLE seizure related changes in heart rate (HR) and in sympathetic/parasympathetic balance through wavelet analysis of HR variability (HRV). Methods: We evaluated the whole night digitally recorded video-polysomnography (VPSG) of 9 patients diagnosed with NFLE with no history of cardiac disorders and normal cardiac examinations. Events with features of NFLE seizures were selected independently by three examiners and included in the study only if a consensus was reached. Heart rate was evaluated by measuring the interval between two consecutive R-waves of QRS complexes (RRi). RRi series were digitally calculated for a period of 20 minutes, including the seizures and resampled at 10 Hz using cubic spline interpolation. A multiresolution analysis was performed (Daubechies-16 form), and the squared level specific amplitude coefficients were summed across appropriate decomposition levels in order to compute total band powers in bands of interest (LF: 0.039062 - 0.156248, HF: 0.156248 - 0.624992). A general linear model was then applied to estimate changes in RRi, LF and HF powers during three different period (Basal) (30 sec, at least 30 sec before seizure onset, during which no movements occurred and autonomic conditions resulted stationary); pre-seizure period (preSP) (10 sec preceding seizure onset) and seizure period (SP) corresponding to the clinical manifestations. For one of the patients (patient 9) three seizures associated with ictal asystole were recorded, hence he was treated separately. Results: Group analysis performed on 8 patients (41 seizures) showed that RRi remained unchanged during the preSP, while a significant tachycardia was observed in the SP. A significant increase in the LF component was instead observed during both the preSP and the SP (p<0.001) while HF component decreased only in the SP (p<0.001). For patient 9 during the preSP and in the first part of SP a significant tachycardia was observed associated with an increased sympathetic activity (increased LF absolute values and LF%). In the second part of the SP a progressive decrease in HR that gradually exceeded basal values occurred before IA. Bradycardia was associated with an increase in parasympathetic activity (increased HF absolute values and HF%) contrasted by a further increase in LF until the occurrence of IA. Conclusions: These data suggest that changes in autonomic balance toward a sympathetic prevalence always preceded clinical seizure onset in NFLE, even when HR changes were not yet evident, confirming that wavelet analysis is a sensitive technique to detect sudden variations of autonomic balance occurring during transient phenomena. Finally we demonstrated that epileptic asystole is associated with a parasympathetic hypertonus counteracted by a marked sympathetic activation.
Resumo:
Background: l’epilessia è una malattia cerebrale che colpisce oggigiorno circa l’1% della popolazione mondiale e causa, a chi ne soffre, convulsioni ricorrenti e improvvise che danneggiano la vita quotidiana del paziente. Le convulsioni sono degli eventi che bloccano istantaneamente la normale attività cerebrale; inoltre differiscono tra i pazienti e, perciò, non esiste un trattamento comune generalizzato. Solitamente, medici neurologi somministrano farmaci, e, in rari casi, l’epilessia è trattata con operazioni neurochirurgiche. Tuttavia, le operazioni hanno effetti positivi nel ridurre le crisi, ma raramente riescono a eliminarle del tutto. Negli ultimi anni, nel campo della ricerca scientifica è stato provato che il segnale EEG contiene informazioni utili per diagnosticare l'arrivo di un attacco epilettico. Inoltre, diversi algoritmi automatici sono stati sviluppati per rilevare automaticamente le crisi epilettiche. Scopo: lo scopo finale di questa ricerca è l'applicabilità e l'affidabilità di un dispositivo automatico portatile in grado di rilevare le convulsioni e utilizzabile come sistema di monitoraggio. L’analisi condotta in questo progetto, è eseguita con tecniche di misure classiche e avanzate, in modo tale da provare tecnicamente l’affidabilità di un tale sistema. La comparazione è stata eseguita sui segnali elettroencefalografici utilizzando due diversi sistemi di acquisizione EEG: il metodo standard utilizzato nelle cliniche e il nuovo dispositivo portatile. Metodi: è necessaria una solida validazione dei segnali EEG registrati con il nuovo dispositivo. I segnali saranno trattati con tecniche classiche e avanzate. Dopo le operazioni di pulizia e allineamento, verrà utilizzato un nuovo metodo di rappresentazione e confronto di segnali : Bump model. In questa tesi il metodo citato verrà ampiamente descritto, testato, validato e adattato alle esigenze del progetto. Questo modello è definito come un approccio economico per la mappatura spazio-frequenziale di wavelet; in particolare, saranno presenti solo gli eventi con un’alta quantità di energia. Risultati: il modello Bump è stato implementato come toolbox su MATLAB dallo sviluppatore F. Vialatte, e migliorato dall’Autore per l’utilizzo di registrazioni EEG da sistemi diversi. Il metodo è validato con segnali artificiali al fine di garantire l’affidabilità, inoltre, è utilizzato su segnali EEG processati e allineati, che contengono eventi epilettici. Questo serve per rilevare la somiglianza dei due sistemi di acquisizione. Conclusioni: i risultati visivi garantiscono la somiglianza tra i due sistemi, questa differenza la si può notare specialmente comparando i grafici di attività background EEG e quelli di artefatti o eventi epilettici. Bump model è uno strumento affidabile per questa applicazione, e potrebbe essere utilizzato anche per lavori futuri (ad esempio utilizzare il metodo di Sincronicità Eventi Stocas- tici SES) o differenti applicazioni, così come le informazioni estratte dai Bump model potrebbero servire come input per misure di sincronicità, dalle quali estrarre utili risultati.
Resumo:
Nocturnal Frontal Lobe Epilepsy (NFLE) is characterized by onset during infancy or childhood with persistence in adulthood, family history of similar nocturnal episodes simulating non-REM parasomnias (sleep terrors or sleepwalking), general absence of morphological substrates, often by normal interictal electroencephalographical recordings (EEGs) during wakefulness. A family history of epilepsy may be present with Mendelian autosomal dominant inheritance has been described in some families. Recent studies indicate the involvement of neuronal nicotinic acetylcholine receptors (nAChRs) in the molecular mechanisms of NFLE. Mutations in the genes encoding for the α4 (CHRNA4) and ß2 (CHRNB2) subunits of the nAChR induce changes in the biophysical properties of nAChR, resulting generally in a “gain of function”. Preclinical studies report that activation of a nuclear receptor called type peroxisome proliferator-activated receptor (PPAR-α) by endogenous molecules or by medications (e.g. fenofibrate) reduces the activity of the nAChR and, therefore, may decrease the frequency of seizures. Thus, we hypothesize that negative modulation of nAChRs might represent a therapeutic strategy to be explored for pharmacological treatment of this form of epilepsy, which only partially responds to conventional antiepileptic drugs. In fact, carbamazepine, the current medication for NFLE, abolishes the seizures only in one third of the patients. The aim of the project is: 1)_to verify the clinical efficacy of adjunctive therapy with fenofibrate in pharmacoresistant NFLE and ADNFLE patients; focousing on the analysis of the polysomnographic action of the PPAR- agonist (fenofibrate). 2)_to demonstrate the subtended mechanism of efficacy by means of electrophysiological and behavioral experiments in an animal model of the disease: particularly, transgenic mice carrying the mutation in the nAChR 4 subunit (Chrna4S252F) homologous to that found in the humans. Given that a PPAR-α agonist, FENOFIBRATE, already clinically utilized for lipid metabolism disorders, provides a promising therapeutic avenue in the treatment of NFLE\ADNFLE.