920 resultados para Numerical Operator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il trattamento numerico dell'equazione di convezione-diffusione con le relative condizioni al bordo, comporta la risoluzione di sistemi lineari algebrici di grandi dimensioni in cui la matrice dei coefficienti è non simmetrica. Risolutori iterativi basati sul sottospazio di Krylov sono ampiamente utilizzati per questi sistemi lineari la cui risoluzione risulta particolarmente impegnativa nel caso di convezione dominante. In questa tesi vengono analizzate alcune strategie di precondizionamento, atte ad accelerare la convergenza di questi metodi iterativi. Vengono confrontati sperimentalmente precondizionatori molto noti come ILU e iterazioni di tipo inner-outer flessibile. Nel caso in cui i coefficienti del termine di convezione siano a variabili separabili, proponiamo una nuova strategia di precondizionamento basata sull'approssimazione, mediante equazione matriciale, dell'operatore differenziale di convezione-diffusione. L'azione di questo nuovo precondizionatore sfrutta in modo opportuno recenti risolutori efficienti per equazioni matriciali lineari. Vengono riportati numerosi esperimenti numerici per studiare la dipendenza della performance dei diversi risolutori dalla scelta del termine di convezione, e dai parametri di discretizzazione.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La determinazione del modulo di Young è fondamentale nello studio della propagazione di fratture prima del rilascio di una valanga e per lo sviluppo di affidabili modelli di stabilità della neve. Il confronto tra simulazioni numeriche del modulo di Young e i valori sperimentali mostra che questi ultimi sono tre ordini di grandezza inferiori a quelli simulati (Reuter et al. 2013)⁠. Lo scopo di questo lavoro è stimare il modulo di elasticità studiando la dipendenza dalla frequenza della risposta di diversi tipi di neve a bassa densità, 140-280 kg m-3. Ciò è stato fatto applicando una compressione dinamica uniassiale a -15°C nel range 1-250 Hz utilizzando il Young's modulus device (YMD), prototipo di cycling loading device progettato all'Istituto per lo studio della neve e delle valanghe (SLF). Una risposta viscoelastica della neve è stata identificata a tutte le frequenze considerate, la teoria della viscoelasticità è stata applicata assumendo valida l'ipotesi di risposta lineare della neve. Il valore dello storage modulus, E', a 100 Hz è stato identificato come ragionevolmente rappresentativo del modulo di Young di ciascun campione neve. Il comportamento viscoso è stato valutato considerando la loss tangent e la viscosità ricavata dai modelli di Voigt e Maxwell. Il passaggio da un comportamento più viscoso ad uno più elastico è stato trovato a 40 Hz (~1.1•10-2 s-1). Il maggior contributo alla dissipazione è nel range 1-10 Hz. Infine, le simulazioni numeriche del modulo di Young sono state ottenute nello stesso modo di Reuter et al.. La differenza tra le simulazioni ed i valori sperimentali di E' sono, al massimo, di un fattore 5; invece, in Reuter et al.⁠, era di 3 ordini di grandezza. Pertanto, i nostri valori sperimentali e numerici corrispondono meglio, indicando che il metodo qui utilizzato ha portato ad un miglioramento significativo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical modelling was performed to study the dynamics of multilayer detachment folding and salt tectonics. In the case of multilayer detachment folding, analytically derived diagrams show several folding modes, half of which are applicable to crustal scale folding. 3D numerical simulations are in agreement with 2D predictions, yet fold interactions result in complex fold patterns. Pre-existing salt diapirs change folding patterns as they localize the initial deformation. If diapir spacing is much smaller than the dominant folding wavelength, diapirs appear in fold synclines or limbs.rnNumerical models of 3D down-building diapirism show that sedimentation rate controls whether diapirs will form and influences the overall patterns of diapirism. Numerical codes were used to retrodeform modelled salt diapirs. Reverse modelling can retrieve the initial geometries of a 2D Rayleigh-Taylor instability with non-linear rheologies. Although intermediate geometries of down-built diapirs are retrieved, forward and reverse modelling solutions deviate. rnFinally, the dynamics of fold-and-thrusts belts formed over a tilted viscous detachment is studied and it is demonstrated that mechanical stratigraphy has an impact on the deformation style, switching from thrust- to folding-dominated. The basal angle of the detachment controls the deformation sequence of the fold-and-thrust belt and results are consistent with critical wedge theory.rn

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nella tesi viene descritto il Network Diffusion Model, ovvero il modello di A. Ray, A. Kuceyeski, M. Weiner inerente i meccanismi di progressione della demenza senile. In tale modello si approssima l'encefalo sano con una rete cerebrale (ovvero un grafo pesato), si identifica un generale fattore di malattia e se ne analizza la propagazione che avviene secondo meccanismi analoghi a quelli di un'infezione da prioni. La progressione del fattore di malattia e le conseguenze macroscopiche di tale processo(tra cui principalmente l'atrofia corticale) vengono, poi, descritte mediante approccio matematico. I risultati teoretici vengono confrontati con quanto osservato sperimentalmente in pazienti affetti da demenza senile. Nella tesi, inoltre, si fornisce una panoramica sui recenti studi inerenti i processi neurodegenerativi e si costruisce il contesto matematico di riferimento del modello preso in esame. Si presenta una panoramica sui grafi finiti, si introduce l'operatore di Laplace sui grafi e si forniscono stime dall'alto e dal basso per gli autovalori. Al fine di costruire una cornice matematica completa si analizza la relazione tra caso discreto e continuo: viene descritto l'operatore di Laplace-Beltrami sulle varietà riemanniane compatte e vengono fornite stime dall'alto per gli autovalori dell'operatore di Laplace-Beltrami associato a tali varietà a partire dalle stime dall'alto per gli autovalori del laplaciano sui grafi finiti.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In dieser Arbeit wird ein neuer Dynamikkern entwickelt und in das bestehendernnumerische Wettervorhersagesystem COSMO integriert. Für die räumlichernDiskretisierung werden diskontinuierliche Galerkin-Verfahren (DG-Verfahren)rnverwendet, für die zeitliche Runge-Kutta-Verfahren. Hierdurch ist ein Verfahrenrnhoher Ordnung einfach zu realisieren und es sind lokale Erhaltungseigenschaftenrnder prognostischen Variablen gegeben. Der hier entwickelte Dynamikkern verwendetrngeländefolgende Koordinaten in Erhaltungsform für die Orographiemodellierung undrnkoppelt das DG-Verfahren mit einem Kessler-Schema für warmen Niederschlag. Dabeirnwird die Fallgeschwindigkeit des Regens, nicht wie üblich implizit imrnKessler-Schema diskretisiert, sondern explizit im Dynamikkern. Hierdurch sindrndie Zeitschritte der Parametrisierung für die Phasenumwandlung des Wassers undrnfür die Dynamik vollständig entkoppelt, wodurch auch sehr große Zeitschritte fürrndie Parametrisierung verwendet werden können. Die Kopplung ist sowohl fürrnOperatoraufteilung, als auch für Prozessaufteilung realisiert.rnrnAnhand idealisierter Testfälle werden die Konvergenz und die globalenrnErhaltungseigenschaften des neu entwickelten Dynamikkerns validiert. Die Massernwird bis auf Maschinengenauigkeit global erhalten. Mittels Bergüberströmungenrnwird die Orographiemodellierung validiert. Die verwendete Kombination ausrnDG-Verfahren und geländefolgenden Koordinaten ermöglicht die Behandlung vonrnsteileren Bergen, als dies mit dem auf Finite-Differenzenverfahren-basierendenrnDynamikkern von COSMO möglich ist. Es wird gezeigt, wann die vollernTensorproduktbasis und wann die Minimalbasis vorteilhaft ist. Die Größe desrnEinflusses auf das Simulationsergebnis der Verfahrensordnung, desrnParametrisierungszeitschritts und der Aufteilungsstrategie wirdrnuntersucht. Zuletzt wird gezeigt dass bei gleichem Zeitschritt die DG-Verfahrenrnaufgrund der besseren Skalierbarkeit in der Laufzeit konkurrenzfähig zurnFinite-Differenzenverfahren sind.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical simulation of the Oldroyd-B type viscoelastic fluids is a very challenging problem. rnThe well-known High Weissenberg Number Problem" has haunted the mathematicians, computer scientists, and rnengineers for more than 40 years. rnWhen the Weissenberg number, which represents the ratio of elasticity to viscosity, rnexceeds some limits, simulations done by standard methods break down exponentially fast in time. rnHowever, some approaches, such as the logarithm transformation technique can significantly improve rnthe limits of the Weissenberg number until which the simulations stay stable. rnrnWe should point out that the global existence of weak solutions for the Oldroyd-B model is still open. rnLet us note that in the evolution equation of the elastic stress tensor the terms describing diffusive rneffects are typically neglected in the modelling due to their smallness. However, when keeping rnthese diffusive terms in the constitutive law the global existence of weak solutions in two-space dimension rncan been shown. rnrnThis main part of the thesis is devoted to the stability study of the Oldroyd-B viscoelastic model. rnFirstly, we show that the free energy of the diffusive Oldroyd-B model as well as its rnlogarithm transformation are dissipative in time. rnFurther, we have developed free energy dissipative schemes based on the characteristic finite element and finite difference framework. rnIn addition, the global linear stability analysis of the diffusive Oldroyd-B model has also be discussed. rnThe next part of the thesis deals with the error estimates of the combined finite element rnand finite volume discretization of a special Oldroyd-B model which covers the limiting rncase of Weissenberg number going to infinity. Theoretical results are confirmed by a series of numerical rnexperiments, which are presented in the thesis, too.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computing the weighted geometric mean of large sparse matrices is an operation that tends to become rapidly intractable, when the size of the matrices involved grows. However, if we are not interested in the computation of the matrix function itself, but just in that of its product times a vector, the problem turns simpler and there is a chance to solve it even when the matrix mean would actually be impossible to compute. Our interest is motivated by the fact that this calculation has some practical applications, related to the preconditioning of some operators arising in domain decomposition of elliptic problems. In this thesis, we explore how such a computation can be efficiently performed. First, we exploit the properties of the weighted geometric mean and find several equivalent ways to express it through real powers of a matrix. Hence, we focus our attention on matrix powers and examine how well-known techniques can be adapted to the solution of the problem at hand. In particular, we consider two broad families of approaches for the computation of f(A) v, namely quadrature formulae and Krylov subspace methods, and generalize them to the pencil case f(A\B) v. Finally, we provide an extensive experimental evaluation of the proposed algorithms and also try to assess how convergence speed and execution time are influenced by some characteristics of the input matrices. Our results suggest that a few elements have some bearing on the performance and that, although there is no best choice in general, knowing the conditioning and the sparsity of the arguments beforehand can considerably help in choosing the best strategy to tackle the problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most quark actions in lattice QCD encounter difficulties with chiral sym-rnmetry and its spontaneous breakdown. Minimally doubled fermions (MDF)rnare a category of strictly local chiral lattice fermions, whose continuum limitrnreproduces two degenerate quark flavours. The two poles of their Dirac ope-rnrator are aligned such that symmetries under charge conjugation or reflectionrnof one particular direction are explictly broken at finite lattice spacing. Pro-rnperties of MDF are scrutinised with regard to broken symmetry and mesonrnspectrum to discern their suitability for numerical studies of QCD.rnrnInteractions induce anisotropic operator mixing for MDF. Hence, resto-rnration of broken symmetries in the continuum limit requires three coun-rnterterms, one of which is power-law divergent. Counterterms and operatorrnmixing are studied perturbatively for two variants of MDF. Two indepen-rndent non-perturbative procedures for removal of the power-law divergencernare developed by means of a numerical study of hadronic observables forrnone variant of MDF in quenched approximation. Though three out of fourrnpseudoscalar mesons are affected by lattice artefacts, the spectrum’s conti-rnnuum limit is consistent with two-flavour QCD. Thus, suitability of MDF forrnnumerical studies of QCD in the quenched approximation is demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquids and gasses form a vital part of nature. Many of these are complex fluids with non-Newtonian behaviour. We introduce a mathematical model describing the unsteady motion of an incompressible polymeric fluid. Each polymer molecule is treated as two beads connected by a spring. For the nonlinear spring force it is not possible to obtain a closed system of equations, unless we approximate the force law. The Peterlin approximation replaces the length of the spring by the length of the average spring. Consequently, the macroscopic dumbbell-based model for dilute polymer solutions is obtained. The model consists of the conservation of mass and momentum and time evolution of the symmetric positive definite conformation tensor, where the diffusive effects are taken into account. In two space dimensions we prove global in time existence of weak solutions. Assuming more regular data we show higher regularity and consequently uniqueness of the weak solution. For the Oseen-type Peterlin model we propose a linear pressure-stabilized characteristics finite element scheme. We derive the corresponding error estimates and we prove, for linear finite elements, the optimal first order accuracy. Theoretical error of the pressure-stabilized characteristic finite element scheme is confirmed by a series of numerical experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coarse graining is a popular technique used in physics to speed up the computer simulation of molecular fluids. An essential part of this technique is a method that solves the inverse problem of determining the interaction potential or its parameters from the given structural data. Due to discrepancies between model and reality, the potential is not unique, such that stability of such method and its convergence to a meaningful solution are issues.rnrnIn this work, we investigate empirically whether coarse graining can be improved by applying the theory of inverse problems from applied mathematics. In particular, we use the singular value analysis to reveal the weak interaction parameters, that have a negligible influence on the structure of the fluid and which cause non-uniqueness of the solution. Further, we apply a regularizing Levenberg-Marquardt method, which is stable against the mentioned discrepancies. Then, we compare it to the existing physical methods - the Iterative Boltzmann Inversion and the Inverse Monte Carlo method, which are fast and well adapted to the problem, but sometimes have convergence problems.rnrnFrom analysis of the Iterative Boltzmann Inversion, we elaborate a meaningful approximation of the structure and use it to derive a modification of the Levenberg-Marquardt method. We engage the latter for reconstruction of the interaction parameters from experimental data for liquid argon and nitrogen. We show that the modified method is stable, convergent and fast. Further, the singular value analysis of the structure and its approximation allows to determine the crucial interaction parameters, that is, to simplify the modeling of interactions. Therefore, our results build a rigorous bridge between the inverse problem from physics and the powerful solution tools from mathematics. rn

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Scilla rock avalanche occurred on 6 February 1783 along the coast of the Calabria region (southern Italy), close to the Messina Strait. It was triggered by a mainshock of the Terremoto delle Calabrie seismic sequence, and it induced a tsunami wave responsible for more than 1500 casualties along the neighboring Marina Grande beach. The main goal of this work is the application of semi-analtycal and numerical models to simulate this event. The first one is a MATLAB code expressly created for this work that solves the equations of motion for sliding particles on a two-dimensional surface through a fourth-order Runge-Kutta method. The second one is a code developed by the Tsunami Research Team of the Department of Physics and Astronomy (DIFA) of the Bologna University that describes a slide as a chain of blocks able to interact while sliding down over a slope and adopts a Lagrangian point of view. A wide description of landslide phenomena and in particular of landslides induced by earthquakes and with tsunamigenic potential is proposed in the first part of the work. Subsequently, the physical and mathematical background is presented; in particular, a detailed study on derivatives discratization is provided. Later on, a description of the dynamics of a point-mass sliding on a surface is proposed together with several applications of numerical and analytical models over ideal topographies. In the last part, the dynamics of points sliding on a surface and interacting with each other is proposed. Similarly, different application on an ideal topography are shown. Finally, the applications on the 1783 Scilla event are shown and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser Shock Peening (LSP) is a technological process used to improve mechanical properties in metallic components. When a short and intense laser pulse irradiates a metallic surface, high pressure plasma is generated on the treated surface; elasto-plastic waves, then, propagate inside the target and create plastic strain. This surface treatment induces a deep compressive residual stresses field on the treated area and through the thickness; such compressive residual stress is expected to increase the fatigue resistance, and reduce the detrimental effects of corrosion and stress corrosion cracking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the outlook of improving seismic vulnerability assessment for the city of Bishkek (Kyrgyzstan), the global dynamic behaviour of four nine-storey r.c. large-panel buildings in elastic regime is studied. The four buildings were built during the Soviet era within a serial production system. Since they all belong to the same series, they have very similar geometries both in plan and in height. Firstly, ambient vibration measurements are performed in the four buildings. The data analysis composed of discrete Fourier transform, modal analysis (frequency domain decomposition) and deconvolution interferometry, yields the modal characteristics and an estimate of the linear impulse response function for the structures of the four buildings. Then, finite element models are set up for all four buildings and the results of the numerical modal analysis are compared with the experimental ones. The numerical models are finally calibrated considering the first three global modes and their results match the experimental ones with an error of less then 20%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies found that soil-atmosphere coupling features, through soil moisture, have been crucial to simulate well heat waves amplitude, duration and intensity. Moreover, it was found that soil moisture depletion both in Winter and Spring anticipates strong heat waves during the Summer. Irrigation in geophysical studies can be intended as an anthropogenic forcing to the soil-moisture, besides changes in land proprieties. In this study, the irrigation was add to a LAM hydrostatic model (BOLAM) and coupled with the soil. The response of the model to irrigation perturbation is analyzed during a dry Summer season. To identify a dry Summer, with overall positive temperature anomalies, an extensive climatological characterization of 2015 was done. The method included a statistical validation on the reference period distribution used to calculate the anomalies. Drought conditions were observed during Summer 2015 and previous seasons, both on the analyzed region and the Alps. Moreover July was characterized as an extreme event for the referred distribution. The numerical simulation consisted on the summer season of 2015 and two run: a control run (CTR), with the soil coupling and a perturbed run (IPR). The perturbation consists on a mask of land use created from the Cropland FAO dataset, where an irrigation water flux of 3 mm/day was applied from 6 A.M. to 9 A.M. every day. The results show that differences between CTR and IPR has a strong daily cycle. The main modifications are on the air masses proprieties, not on to the dynamics. However, changes in the circulation at the boundaries of the Po Valley are observed, and a diagnostic spatial correlation of variable differences shows that soil moisture perturbation explains well the variation observed in the 2 meters height temperature and in the latent heat fluxes.On the other hand, does not explain the spatial shift up and downslope observed during different periods of the day. Given the results, irrigation process affects the atmospheric proprieties on a larger scale than the irrigation, therefore it is important in daily forecast, particularly during hot and dry periods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the problem of performing a numerical simulation of quasi-static crack propagation within an adhesive layer of a bonded joint under Mode I loading affected by stress field changes due to thermal-chemical shrinkage induced by cure process is addressed. Secondly, a parametric study on fracture critical energy, cohesive strength and Young's modulus is performed. Finally, a particular case of adhesive layer stiffening is simulated in order to verify qualitatively the major effect.