1000 resultados para Ion track


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Medium energy (5-25 keV) C-13(+) ion implantation into diamond (100) to a fluence ranging from 10(16) cm(-2) to 10(18) cm(-2) was performed for the study of diamond growth via the approach of ion beam implantation. The samples were characterized with Rutherford backscattering/channelling spectroscopy, Raman spectroscopy, X-ray photoemission spectroscopy and Auger electron spectroscopy. Extended defects are formed in the cascade collision volume during bombardment at high temperatures. Carbon incorporation indeed induces a volume growth but the diamond (100) samples receiving a fluence of 4 x 10(17) to 2 x 10(18) at. cm(-2) (with a dose rate of 5 x 10(15) at. cm(-2) s(-1) at 5 to 25 keV and 800 degrees C) showed no He-ion channelling. Common to these samples is that the top surface layer of a few nanometers has a substantial amount of graphite which can be removed by chemical etching. The rest of the grown layer is polycrystalline diamond with a very high density of extended defects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using the mass-analyzed low energy dual ion beam deposition technique, a high quality epitaxial, insulating cerium dioxide thin film with a thickness of about 2000 Angstrom, has been grown on a silicon (111) substrate. The component species, cerium and oxygen, are homogeneous in depth, and have the correct stoichiometry for CeO2. X-ray double-crystal diffraction shows that the full width at half maximum of the (222) and (111) peaks of the film are less than 23 and 32 s, respectively, confirming that the film is a perfect single crystal. (C) 1995 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sidegating effect on the Schottky barrier in ion-implanted GaAs was investigated with capacitance-voltage profiling at various negative substrate voltages. It was demonstrated that the negative substrate voltage modulates the Schottky depletion region width as well as the space charge region at the substrate-active channel interface. (C) 1995 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High concentrations of Si and Zn were implanted into (0001) AlN bulk crystal grown by the self-seeded physical vapor transport (PVT) method. Cathode luminescence (CL) and photoluminescence (PL) spectroscopy were used to investigate the defects and properties of the implanted AlN. PL spectra of the implanted AlN are dominated by a broad near-band luminescence peak between 200 and 254 nm. After high temperature annealing, implantation induced lattice damages are recovered and the PL intensity increases significantly, suggesting that the implanted impurity Si and Zn occupy lattice site of Al. CL results imply that a 457 nm peak is Al vacancy related. Resistance of the AlN samples is still very high after annealing, indicating a low electrical activation efficiency of the impurity in AlN single crystal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We reported a passive Q-switched diode laser pumped Yb:YAG microchip laser with an ion-implanted semi-insulating GaAs wafer. The wafer was implanted with 400-keV As^(+) in the concentration of 10^(16) ions/cm^(2). To decrease the non-saturable loss, we annealed the ion-implanted GaAs at 500 oC for 5 minutes and coated both sides of the ion-implanted GaAs with antireflection (AR) and highreflection (HR) films, respectively. Using GaAs wafer as an absorber and an output coupler, we obtained 52-ns pulse duration of single pulse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An integratable distributed Bragg reflector laser is fabricated by low-energy ion implantation induced quantum well intermixing. A 4.6nm quasi-continuous wavelength tuning range is achieved by controlling phase current and grating current simultaneously,and side mode suppression ratio maintains over 30dB throughout the tuning range except a few mode jump points.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High power and high-slope efficiency 650nm band real-refractive-index ridge waveguide AlGaInP laser diodes with compressive strained MQW active layer are formed by pure Ar ion beam etching process.Symmetric laser mesas with high perpendicularity,which are impossible to obtain by traditional wet etching method due to the use of a 15°-misoriented substrate,are obtained by this dry etching method.Laser diodes with 4μm wide,600μm long and 10%/90% coat are fabricated.The typical threshold current of these devices is 46mA at room temperature,and a stable fundamental-mode operation over 40mW is obtained.Very high slope efficiency of 1.4W/A at 10mW and 1.1W/A at 40mW are realized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A passive Q-switched flash-lamp-pumped Nd:YAG laser with the ion-implanted semi-insulating GaAs water is reported.The wafer is implanted with 400keV As~+ ions in the concentration of 10~(16)cm~(-2). Using GaAs wafer as an absorber and an output coupler.62ns pulse duration of single pulse is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fe-N films containing the Fe16N2 phase were prepared in a high-vacuum system of ion-beam-assisted deposition (IBAD). The composition and structure of the films were analysed by Auger electron spectroscopy (AES) and X-ray diffraction (XRD), respectively. Magnetic properties of the films were measured by a vibrating sample magnetometer (VSM). The phase composition of Fe-N films depend sensitively on the N/Fe atomic arrival ratio and the deposition temperature. An Fe16N2 film was deposited successfully on a GaAs (1 0 0) substrate by IBAD at a N/Fe atomic arrival ratio of 0.12. The gram-saturation magnetic moment of the Fe16N2 film obtained is 237 emu/g at room temperature, the possible cause has been analysed and discussed. Hysteresis loops of Fe16N2 have been measured, the coercive force H-c is about 120 Oe, which is much larger than the value for Fe, this means the Fe16N2 sample exhibits a large uniaxial magnetocrystalline anisotropy. (C) 1998 Elsevier Science B.V. All rights reserved.