811 resultados para High-intensity running
Resumo:
Effects of interface roughness and dislocation density on the electroluminescence (EL) intensity of InGaN multiple quantum wells (MQWs) are investigated. It is found that the EL intensity increases with the number of satellite peaks in the x-ray diffraction experiments of InGaN MQW samples. It is indicated that the rough interface will lead the reduction of EL intensity of InGaN MQW samples. It is also found that the EL intensity increases with the decrease of dislocation density which is characterized by the x-ray diffraction measurements. It is suggested that the EL intensity of InGaN MQWs can be improved by decreasing the interface roughness and dislocation density.
Resumo:
InGaN/GaN multi-quantum-well blue (461 +/- 4 nm) light emitting diodes with higher electroluminescence intensity are obtained by postgrowth thermal annealing at 720 C in O-2-ambient. Based on our first-principle total-energy calculations, we conclude that besides dissociating the Mg-H complex by forming H2O, annealing in O-2 has another positive effect on the activation of acceptor Mg in GaN. Mg can be further activated by the formation of an impurity band above the valence band maximum of host GaN from the passivated Mg-Ga-O-N complex. Our calculated ionization energy for acceptor Mg in the passivated system is about 30 meV shallower than that in pure GaN, in good agreement with previous experimental measurement. Our model can explain that the enhanced electroluminescence intensity of InGaN/GaN MQWs based on Mg-doped p-type GaN is due to a decrease in the ionization energy of Mg acceptor with the presence of oxygen. (C) 2008 American Institute of Physics.
Resumo:
We develop a modified two-step method of growing high-density and narrow size-distribution InAs/GaAs quantum dots (QDs) by molecular beam epitaxy. In the first step, high-density small InAs QDs are formed by optimizing the continuous deposition amount. In the second step, deposition is carried out with a long growth interruption for every 0.1 InAs monolayer. Atomic force microscope images show that the high-density (similar to 5.9x 10(10) CM-2) good size-uniformity InAs QDs are achieved. The strong intensity and narrow linewidth (27.7 meV) of the photoluminescence spectrum show that the QDs grown in this two-step method have a good optical quality.
Resumo:
High structural and optical quality 1.3 mu m GaInNAs/GaAs quantum well (QW) samples with higher (42.5%) indium content were successfully grown by molecular-beam epitaxy. The cross-sectional transmission electron microscopy measurements reveal that there are no structural defects in such high indium content QWs. The room-temperature photoluminescence peak intensity of the GaIn0.425NAs/GaAs (6 nm/20 nm) 3QW is higher than, and the full width at half maximum is comparable to, that of In0.425GaAs/GaAs 3QW, indicating improved optical quality caused by strain compensation effect of introducing N to the high indium content InGaAs epilayer. (C) 2005 American Institute of Physics.
Resumo:
We have successfully grown self-assembled InxGa1-xAs (x = 0.44, 0.47, 0.50) quantum dots (QDs) with high density (> 10(11)/cm(2)) by MBE. The effect of In content on the high-density QD is investigated by atomic force microscopy (AFM) and photoluminescence (PL) spectra. It is found that sample with In-mole-fraction of 0.5 shows small size fluctuation and high PL intensity. The influence of growth temperature on high-density QD is also investigated in our experiment. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
State-filling effects of the exciton in a In0.65Al0.35As/Al0.4Ga0.6As quantum dot array are observed by quantum dot array photolumineseence at a sample temperature of 77 K. The exciton emission at low excitation density is dominated by the radiative recombination of the states in the s shell and at high excitation density the emission mainly results from the radiative recombination of the exciton state in the p shell. The spectral interval between the states in the s and p shells is about 30-40 mcV. The time resolved photoluminescence shows that the decay time of exciton states in the p shell is longer than that of exciton states in the s shell, and the emission intensity of the exciton state in the p shell is superlinearly dependent on excitation density. Furthermore, electron-hole liquid in the quantum dot array is observed at 77 K, which is a much higher temperature than that in bulk. The emission peak of the. recombination, of electron-hole liquid has an about 200 meV redshift from the exciton fluorescence. Two excitation density-dependent emission peaks at 1.56 and 1.59 eV are observed, respectively, which result from quantum confinement effects in QDs. The emission intensity of electron-hole liquid is directly proportional to the cubic of excitation densities and its decay time decreases significantly at the high excitation density.
Resumo:
Mn ions were doped into InAs/GaAs quantum dots samples by high energy. implantation and subsequent annealing. The optical and electric properties of the samples have been studied. The photoluminescence intensity of the samples annealed rapidly is stronger than that of the samples annealed for long time. By studying the relationship between the photoluminescence peaks and the implantation dose, it can be found that the photoluminescence peaks of the quantum dots show a blueshift firstly and then move to low energy with the implantation. dose increasing. The latter change in the photoluminescence peaks is probably attributed to that Mn ions entering the InAs quantum dots, which release the strain of the quantum dots. For the samples implanted by heavy dose (annealed rapidly) and the samples annealed for long time, the resistances versus temperature curves reveal anomalous peaks around 40 K.
Resumo:
The deep level luminescence of crack-free Al0.25Ga0.75N layers grown on a GaN template with a high-temperature grown AlN interlayer has been studied using spatially resolved cathodoluminescence (CL) spectroscopy. The CL spectra of Al0.25Ga0.75N grown on a thin AlN interlayer present a deep level aquamarine luminescence (DLAL) band at about 2.6 eV and a deep level violet luminescence (DLVL) band at about 3.17 eV. Cross-section line scan CL measurements on a cleaved sample edge clearly reveal different distributions of DLAL-related and DLVL-related defects in AlGaN along the growth direction. The DLAL band of AlGaN is attributed to evolve from the yellow luminescence band of GaN, and therefore has an analogous origin of a radiative transition between a shallow donor and a deep acceptor. The DLVL band is correlated with defects distributed near the GaN/AlN/AlGaN interfaces. Additionally, the lateral distribution of the intensity of the DLAL band shows a domainlike feature which is accompanied by a lateral phase separation of Al composition. Such a distribution of deep level defects is probably caused by the strain field within the domains. (c) 2006 American Institute of Physics.
Resumo:
4.2 K photoluminescence (PL) and 77 K standard Hall-effect measurements were performed for In0.52Al0.48As/InxGa1-xAs metamorphic high-electron-mobility-transistor (HEMT) structures grown on GaAs substrates with different indium contents in the InxGa1-xAs well or different Si delta-doping concentrations. It was found that electron concentrations increased with increasing PL intensity ratio of the "forbidden" transition (the second electron subband to the first heavy-hole subband) to the sum of the "allowed" transition (the first electron subband to the first heavy-hole subband) and the forbidden transition. And electron mobilities decreased with increasing product of the average full width at half maximum of allowed and forbidden transitions and the electron effective mass in the InxGa1-xAs quantum well. These results show that PL measurements are a good supplemental tool to Hall-effect measurements in optimization of the HEMT layer structure. (c) 2006 American Institute of Physics.
Resumo:
Sb-assisted GaInNAs/GaAs quantum wells (QWs) with high (42.5%) indium content were investigated systematically. Transmission electron microscopy, reflection high-energy electron diffraction and photoluminescence (PL) measurements reveal that Sb acts as a surfactant to suppress three-dimensional growth. The improvement in the 1.55 mu m range is much more apparent than that in the 1.3 mu m range.. which can be attributed to the difference in N composition. The PL intensity and the full-width at half maximum of the 1.55 mu m single-QW were comparable with that of the 1.3 Am QWs. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The structural and optical properties of GaAsSb/GaAs quantum wells (QWs) and strain-compensated GaAsP/GaAs/GaAsSb/GaAs/GaAsP QWs grown on a GaAs substrate by molecular beam epitaxy are investigated using high-resolution x-ray diffraction and photoluminescence (PL) measurements. We demonstrated that the insertion of tensile GaAsP layers into the active region of GaAsSb/GaAs QWs effectively improves the structural and optical quality. Even the Sb composition is as high as 0.39. The PL spectra at 11 K and room temperature indicate that the PL peak of strain-compensated QWs has a narrower linewidth and higher intensity in comparison to the sample without strain compensation. The results of PL peak blueshift with increasing excitation show the strain-compensated GaAsSb/GaAs interface characteristic of type-I band alignment. (C) 2003 American Institute of Physics.
Resumo:
In this paper we propose a new method for measuring the thickness of the GaN epilayer, by using the ratio of the integrated intensity of the GaN epilayer X-ray diffraction peaks to that of the sapphire substrate ones. This ratio shows a linear dependence on the GaN epilayer thickness up to 2 mum. The new method is more accurate and convenient than those of using the relationship between the integrated intensity of GaN epilayer diffraction peaks and the GaN thickness. Besides, it can eliminate the absorption effect of the GaN epilayer.
Resumo:
(1 1 (2) over bar 0) GaN/InGaN multiple quantum wells (MQWs) were grown on (1 (2) over bar 0 2) sapphire by metal-organic vapor phase epitaxy. The excitation-intensity-dependent photoluminescence (PL) spectrum of these samples was measured, and no peak shift was observed. This phenomenon was attributed to the absence of piezoelectric field (PEF) along the growth orientation of the (1 1 (2) over bar 0) face MQWs. Our experimental results showed that PEF was the main reason causing peak blueshift in excitation-intensity-dependent PL spectrum of (0 0 0 1) InGaN/GaN NIQWs. It was expected that fabricating (1 1 (2) over bar 0) face nitride device should be a method to avoid PEF and get low-threshold, high-quantum-efficiency and stable-emission-wavelength light-emission devices. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Tunnel-regenerated multiple-active-region (TRMAR) light-emitting diodes (LEDs) with high quantum efficiency and high brightness have been proposed and fabricated. We have proved experimentally that the efficiency of the electrical luminescence and the on-axis luminous intensity of such TRMAR LEDs scaled linearly approximately with the number of the active regions. The on-axis luminous intensity of such TRMAR LEDs with only 3 mum GaP current spreading layer have exceeded 5 cd at 20 mA dc operation under 15 degrees package. The high-quantum-efficiency and high-brightness LEDs under the low injection level were realized. (C) 2001 American Institute of Physics.
Resumo:
InAlAs/InGaAs metamorphic high-electron-mobility transistor structures with different spacer layers on GaAs substrates are characterized by Raman measurements. The influence of In0.52Al0.48As spacer thickness on longitudinal optic phonon-plasmon coupling is investigated. It is found that the intensity of GaAs-like longitudinal optic phonon, which couples with collective intersubband transitions of two-dimensional electron gas, is strongly affected by the different subband energy spacings, subband electron concentrations, and wave function distributions, which are determined by different spacer thicknesses. (C) 2001 American Institute of Physics.