904 resultados para Electrochemistry.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of variations in the composition for ternary catalysts of the type Pt-x(Ru-Ir)(1-x)/C on the methanol oxidation reaction in acid media for x values of 0.25, 0.50 and 0.75 is reported. The catalysts were prepared by the sol-gel method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic absorption spectroscopy (AAS) and energy dispersive X-ray (EDX) analyses. The nanometric character (2.8-3.2 nm) of the sol-gel deposits was demonstrated by XRD and TEM while EDX and AAS analyses showed that the metallic ratio in the compounds was very near to the expected one. Cyclic voltammograms for methanol oxidation revealed that the reaction onset occur at less positive potentials in all the ternary catalysts tested here when compared to a Pt-0.75-Ru-0.25/C (E-Tek) commercial composite. Steady-state polarization experiments (Tafel plots) showed that the Pt-0.25(Ru-Ir)(0.75)/C catalyst is the more active one for methanol oxidation as revealed by the shift of the reaction onset towards lower potentials. In addition, constant potential electrolyses suggest that the addition of Ru and Ir to Pt decreases the poisoning effect of the strongly adsorbed species generated during methanol oxidation. Consequently, the Pt-0.25 (Ru-Ir)(0.75)/C Composite catalyst is a very promising one for practical applications. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrochemical methods cyclic and square-wave voltammetry were applied to develop an electroanalytical procedure for the determination of N-nitrosamines (N-nitrosopyrrolidine, N-nitrosopiperidine and N-nitrosodiethylamine) in aqueous solutions. Cyclic voltammetry was used to evaluate the electrochemical behaviors of N-nitrosamines on boron-doped diamond electrodes. It was observed an irreversible electrooxidation peak located in approximately 1.8 V (vs. Ag/AgCl) for both N-nitrosamines. The optimal electrochemical response was obtained using the following square-wave voltammetry parameters: f = 250 Hz, E(sw) = 50 mV and E(s) = 2 mV using a Britton-Robinson buffer solution as electrolyte (pH 2). The detection and quantification limits determined for total N-nitrosamines were 6.0 x 10(-8) and 2.0 x 10(-7) mol L(-1), respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new composite electrode based on multiwall carbon nanotubes (MWCNT) and silicone-rubber (SR) was developed and applied to the determination of propranolol in pharmaceutical formulations. The effect of using MWCNT/graphite mixtures in different proportions was also investigated. Cyclic voltammetry and electrochemical impedance spectroscopy were used for electrochemical characterization of different electrode compositions. Propranolol was determined using MWCNT/SR 70% (m/m) electrodes with linear dynamic ranges up to 7.0 mu molL(-1) by differential pulse and up to 5.4 mu molL(-1) by square wave voltammetry, with LODs of 0.12 and 0.078 mu molL(-1), respectively. Analysis of commercial samples agreed with that obtained by the official spectrophotometric method. The electrode is mechanically robust and presented reproducible results and a long useful life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrochemical activation and physical degradation of boron-doped diamond (BDD) electrodes with different boron doping levels after repeated cathodic pretreatments are reported. Galvanostatic cathodic pretreatment passing up to -14000 C cm(-2) in steps of -600 C cm(-2) using -1 A cm(-2) caused significant physical degradation of the BDD surface, with film detachment in some areas. Because of this degradation, a great increase in the electrochemically active area was observed in Tafel plots for the hydrogen evolution reaction (HER) in acid media. The minimum cathodic pretreatment needed for the electrochemical activation of the BDD electrodes without producing any observable physical degradation on the BDD surfaces was determined using electrochemical impedance spectroscopy (EIS) measurements and cyclic voltammetry: -9 C cm(-2), passed at -1 A cm(-2). This optimized cathodic pretreatment can be safely used when electrochemical experiments are carried out on BDD electrodes with doping levels in the range between 800 and 8000 ppm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comparative study of two different conductive carbon-black pigments, Vulcan XC-72 R and Printex L6, for the electrogeneration of hydrogen peroxide (H(2)O(2)) by reducing dissolved oxygen in an alkaline solution was performed. The materials were physically characterized by X-ray diffraction (XRD), Fourier transform infrared attenuated total reflection (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). XRD shows the presence of SO(2) and ATR-FTIR technique indicates a difference in NO and SO(2) functional groups between the two carbon pigments. XPS indicated presence of SO and NO and more oxygenated acid species on Printex L6. A rotating ring-disk electrode was used for electrochemical analysis of the oxygen reduction reaction (ORR). The results showed that the Printex L6 was better than Vulcan XC-72 R for H(2)O(2) production. Results also indicate that the number of electrons transferred in the ORR for Printex L6 and Vulcan XC-72 R were 2.2 and 2.9, respectively, while the percentages of H(2)O(2) formed were 88% and 51%. Scanning electrochemistry microscopy images confirmed the higher amount of H(2)O(2) formed in the Printex L6 pigment. Printex L6 was shown to be a more promising for H(2)O(2) production than Vulcan XC-72 R, while the latter was shown to have more potential for fuel cells. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present in this work a comprehensive investigation of the role played by dissolved tetrafluoroboric acid on the electrochemical response of a polycrystalline platinum electrode in acidic media. HBF(4) from two different suppliers was employed and characterized in terms of the amount of arsenic contamination by Inductively Coupled Plasma-Optical Emission Spectroscopy. The effect of different amounts of HBF(4) on the voltammetric profile of the Pt vertical bar HClO(4)(aq) interface was investigated by means of electrochemical quartz crystal nanobalance (EQCN). Despite the comparable cyclic voltammograms, the presence of arsenic in one of the two HBF(4) used resulted in dramatic variations in the mass change profile, which evidences the deposition/dissolution of arsenic prior to the surface oxidation. For the arsenic-free HBF(4), its effect on the mass change profile was mainly associated to anion adsorption. The impact of dissolved HBF(4) on the electro-oxidation of formic acid was rationalized in terms of two contributions: current enhancement at low potentials due to the arsenic-assisted formic acid electro-oxidation and inhibition at high potentials due to anion adsorption. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cathodically pretreated boron-doped diamond electrode was used for the simultaneous anodic determination of ascorbic acid (AA) and caffeine (CAF) by differential pulse voltammetry Linear calibration curves (r = 0 999) were obtained from 1 9 x 10(-5) to 2 I x 10(-4) mol L(-1) for AA and from 9 7 x 10(-6) to 1 1 x 10-4 mol L(-1) for CAF. with detection limits of 19 wool L(-1) and 7 0 mu nol L(-1). respectively This method was successfully applied for the determination of AA and CAF in pharmaceutical formulations. with results equal to those obtained using a HPLC reference method

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oscillatory electro-oxidation of methanol was studied by means of in situ infrared (IR) spectroscopy in the attenuated total reflection (ATR) configuration using a platinum film on a Si prism as working electrode. The surface-enhanced infrared absorption (SEIRA) effect considerably improves the spectroscopic resolution, allowing at following the coverage of some adsorbing species during the galvanostatic oscillations. Carbon monoxide was the main adsorbed specie observed in the induction period and within the oscillatory regime. The system was investigated at two distinct time-scales and its dynamics characterized accordingly. During the induction period the main transformation observed as the system move through the phase space towards the oscillatory region was the decrease of the coverage of adsorbed carbon, coupled to the increase of the electrode potential. Similar transition characterizes the evolution within the oscillatory region, but at a considerably slower rate. Experiments with higher time resolution revealed that the electrode potential oscillates in-phase with the frequency of the linearly adsorbed CO vibration and that the amount of adsorbed CO oscillates with small amplitude. Adsorbed formate was found to play, if any, a very small role. Results are discussed and compared with other systems. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Instead of a time-invariant voltammetric profile, many electrochemical systems display a cycle-dependent current-potential response. This phenomenon has been referred to as complex voltammetric response and it has been observed during the electro-oxidation of several molecules such as methanol, ethanol, propanol and hydrogen. There are currently two explanations for the surface mechanism underlying this behavior. In one scenario, the complex voltammogram would result from the specific kinetic pathway taken during the forward sweep. In the other explanation, the phenomenon is discussed in terms of the interplay among the surface roughening and subsequent relaxation, and the ohmic drop coupled to a negative differential resistance. We report in this paper a nanogravimetric investigation of the complex voltammetric response in the electro-oxidation of methanol on platinum electrode in both acidic and alkaline media. Different periodic patterns composed of intercalated small and large hysteresis cycles were observed as a function of the applied voltage and the series resistance between the working electrode and the potentiostat. Independently, nanogravimetric results indicated no detectable difference in the delta-frequency versus voltage profile between small and large hysteresis cycles. These findings were interpreted as experimental evidence of the secondary, if any, role played by the very electrochemical reaction on the emergence of complex voltammetric response. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Platinum stepped surfaces vicinal to the (1 1 0) crystallographic pole have been investigated voltammetrically in 0.1 M HClO(4) and 0.1 M H(2)SO(4) solutions. Changes in the voltammetric profile with the step density suggest the existence of two types of surface sites, that has been ascribed to linear and bidimensional domains. This result indicates the existence of important restructuring processes that separate the real surface distribution from the nominal one. The electronic properties of the surfaces have been characterized with the CO charge displacement method and the potential of zero total charge has been calculated as a function of the step density. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The layer-by-layer technique was exploited to immobilize the enzyme uricase onto indium tin oxide substrates coated with a layer of Prussian Blue. Uricase layers were alternated with either poly(ethylene imine) or poly(diallyidimethylammoniumchloride), and the resulting films were used as amperometric biosensors for uric acid. Biosensors with optimum perfomance had a limit of detection of 0.15 mu A mu mol 1(-1) cm(-2) with a linear response between 0.1 and 0.6 mu M of uric acid, which is sufficient for use in clinical tests. Bioactivity was preserved for weeks, and there was negligible influence from interferents, as detection was carried out at 0.0 V vs saturated calomel electrode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lignins extracted from sugar cane bagasse using different alcohols in the organosolv-CO(2) supercritical pulping process have been applied in the fabrication of ultrathin films through the Langmuir-Blodgett technique. Langmuir films were characterized by surface pressure versus mean molecular area (Pi-A) isotherms to exploit the sensitivity of nanostructured lignin films to metallic ions (Cu(2+), Cd(2+) and Pb(2+)). The Pi-A isotherms were shifted to larger molecular areas when heavy metal ions are present into the subphase, which might be related to electrostatic repulsions between metallic ions entrapped within the lignin molecular structure. Taking the advantage of metal incorporation, Langmuir monolayers were transferred onto solid substrates forming Langmuir-Blodgett (LB) films to be used as a transducer in an "electronic tongue" system to detect Cu(2+) in aqueous solution below threshold standard established by the Brazilian regulation. Both techniques impedance spectroscopy and electrochemistry have been used in these experiments. Complementary, Fourier transform infrared (FTIR) spectroscopy recorded for LB films before and after soaking into Cu(2+) aqueous solution revealed an interaction between the lignin phenyl groups and the metallic ion. (C) 2007 Elsevier B.V.. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)