972 resultados para electro-optic modulation
Resumo:
We have observed Wannier-Stark localization in strained In0.2Ga0.8As/GaAs superlattices by low- and room-temperature photocurrent spectra measurements. The experimental results are well in agreement with the theoretical predictions. A large field-induced modulation response of the absorption edge of the superlattices at room temperature suggests the possibilities of the application to the design of various kinds of electro-optical devices operating at a wavelength of 0.98 mum, based on Wannier-Stark localization effects.
Resumo:
By neutron diffraction and other experiments, we have found that oxygen ions in YBCO can diffuse out of the sample in vacuo at room and low temperature, while the T(c) decreases greatly. We have also found that if the vacuum-deoxidation process lasts for several days there will be a damping oscillation of T(c) with time (t), and higher vacuum corresponds to a greater amplitude and a shorter period. We tentatively think that T(c) should satisfy the following function: T(c0) is-proportional-to T(c)e(-betat)cos (omegat + phi); it may be due to the diffusion of oxygen and the saturation of the valence state.
Resumo:
The magnetotransport properties of the two-dimensional (2D) electron gas confined in a modulation-doped Zn0.80Cd0.20Se/ZnS0.06Se0.94 single quantum well structure were studied at temperatures down to 0.35 K in magnetic fields up to 7.5 T. Well resolved 2D Shubnikovde Haas (SdH) oscillations were observed, although the conductivity of the sample in the as grown state was dominated by a bulk parallel conduction layer. After removing most of the parallel conduction layer by wet chemical etching the amplitude and number of SdH oscillations increased. From the temperature dependence of the amplitude the effective mass of the electrons was estimated as 0.17 m(0). Copyright (C) 1996 Published by Elsevier Science Ltd
Resumo:
Photo-luminescence and electro-luminescence from step-graded index SiGe/Si quantum well grown by molecular beam epitaxy is reported. The SiGe/Si step-graded index quantum well structure is beneficial to the enhancing of electro-luminescence. The optical and electrical properties of this structure are discussed.
Resumo:
We present photoluminescence studies on highly dense two-dimensional electron gases in selectively Si delta-doped GaAs/In0.18Ga0.82As/Al0.25Ga0.75As quantum wells (N(s) = 4.24 x 10(12) cm-2). Five well-resolved photoluminescence lines centered at 1.4194, 1.4506, 1.4609, 1.4695 and 1.4808 eV were observed, which are attributed to the subband excition emission. The subband separations clearly exhibit the feature of a typical quantum well with triangle and square potential. These very intensive and sharp luminescence peaks with linewidths of 2.2 to 3.5 meV indicate the high quality of the structures. Their dependence on the excitation intensity and temperatures are also discussed.