817 resultados para Vector sensor
Resumo:
The personalised conditioning system (PCS) is widely studied. Potentially, it is able to reduce energy consumption while securing occupants’ thermal comfort requirements. It has been suggested that automatic optimised operation schemes for PCS should be introduced to avoid energy wastage and discomfort caused by inappropriate operation. In certain automatic operation schemes, personalised thermal sensation models are applied as key components to help in setting targets for PCS operation. In this research, a novel personal thermal sensation modelling method based on the C-Support Vector Classification (C-SVC) algorithm has been developed for PCS control. The personal thermal sensation modelling has been regarded as a classification problem. During the modelling process, the method ‘learns’ an occupant’s thermal preferences from his/her feedback, environmental parameters and personal physiological and behavioural factors. The modelling method has been verified by comparing the actual thermal sensation vote (TSV) with the modelled one based on 20 individual cases. Furthermore, the accuracy of each individual thermal sensation model has been compared with the outcomes of the PMV model. The results indicate that the modelling method presented in this paper is an effective tool to model personal thermal sensations and could be integrated within the PCS for optimised system operation and control.
Resumo:
Wireless Sensor Networks (WSNs) have been an exciting topic in recent years. The services offered by a WSN can be classified into three major categories: monitoring, alerting, and information on demand. WSNs have been used for a variety of applications related to the environment (agriculture, water and forest fire detection), the military, buildings, health (elderly people and home monitoring), disaster relief, and area or industrial monitoring. In most WSNs tasks like processing the sensed data, making decisions and generating emergency messages are carried out by a remote server, hence the need for efficient means of transferring data across the network. Because of the range of applications and types of WSN there is a need for different kinds of MAC and routing protocols in order to guarantee delivery of data from the source nodes to the server (or sink). In order to minimize energy consumption and increase performance in areas such as reliability of data delivery, extensive research has been conducted and documented in the literature on designing energy efficient protocols for each individual layer. The most common way to conserve energy in WSNs involves using the MAC layer to put the transceiver and the processor of the sensor node into a low power, sleep state when they are not being used. Hence the energy wasted due to collisions, overhearing and idle listening is reduced. As a result of this strategy for saving energy, the routing protocols need new solutions that take into account the sleep state of some nodes, and which also enable the lifetime of the entire network to be increased by distributing energy usage between nodes over time. This could mean that a combined MAC and routing protocol could significantly improve WSNs because the interaction between the MAC and network layers lets nodes be active at the same time in order to deal with data transmission. In the research presented in this thesis, a cross-layer protocol based on MAC and routing protocols was designed in order to improve the capability of WSNs for a range of different applications. Simulation results, based on a range of realistic scenarios, show that these new protocols improve WSNs by reducing their energy consumption as well as enabling them to support mobile nodes, where necessary. A number of conference and journal papers have been published to disseminate these results for a range of applications.
Resumo:
Network diagnosis in Wireless Sensor Networks (WSNs) is a difficult task due to their improvisational nature, invisibility of internal running status, and particularly since the network structure can frequently change due to link failure. To solve this problem, we propose a Mobile Sink (MS) based distributed fault diagnosis algorithm for WSNs. An MS, or mobile fault detector is usually a mobile robot or vehicle equipped with a wireless transceiver that performs the task of a mobile base station while also diagnosing the hardware and software status of deployed network sensors. Our MS mobile fault detector moves through the network area polling each static sensor node to diagnose the hardware and software status of nearby sensor nodes using only single hop communication. Therefore, the fault detection accuracy and functionality of the network is significantly increased. In order to maintain an excellent Quality of Service (QoS), we employ an optimal fault diagnosis tour planning algorithm. In addition to saving energy and time, the tour planning algorithm excludes faulty sensor nodes from the next diagnosis tour. We demonstrate the effectiveness of the proposed algorithms through simulation and real life experimental results.
Resumo:
Extensive population structuring is known to occur in Anopheles darlingi, the primary malaria vector of the Neotropics. We analysed the phylogeographic structure of the species using the mitochondrial cytochrome oxidase I marker. Diversity is divided into six main population groups in South America: Colombia, central Amazonia, southern Brazil, south-eastern Brazil, and two groups in north-east Brazil. The ancestral distribution of the taxon is hypothesized to be central Amazonia, and there is evidence of expansion from this region during the late Pleistocene. The expansion was not a homogeneous front, however, with at least four subgroups being formed due to geographic barriers. As the species spread, populations became isolated from each other by the Amazon River and the coastal mountain ranges of south-eastern Brazil and the Andes. Analyses incorporating distances around these barriers suggest that the entire South American range of An. darlingi is at mutation-dispersal-drift equilibrium. Because the species is distributed throughout such a broad area, the limited dispersal across some landscape types promotes differentiation between otherwise proximate populations. Moreover, samples from the An. darlingi holotype location in Rio de Janeiro State are substantially derived from all other populations, implying that there may be additional genetic differences of epidemiological relevance. The results obtained contribute to our understanding of gene flow in this species and allow the formulation of human mosquito health protocols in light of the potential population differences in vector capacity or tolerance to control strategies. (C) 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 854-866.
Resumo:
The molecular mechanism of factor Xa (FXa) inhibition by Alboserpin, the major salivary gland anticoagulant from the mosquito and yellow fever vector Aedes albopictus, has been characterized. cDNA of Alboserpin predicts a 45-kDa protein that belongs to the serpin family of protease inhibitors. Recombinant Alboserpin displays stoichiometric, competitive, reversible and tight binding to FXa (picomolar range). Binding is highly specific and is not detectable for FX, catalytic site-blocked FXa, thrombin, and 12 other enzymes. Alboserpin displays high affinity binding to heparin (K(D) similar to 20 nM), but no change in FXa inhibition was observed in the presence of the cofactor, implying that bridging mechanisms did not take place. Notably, Alboserpin was also found to interact with phosphatidylcholine and phosphatidylethanolamine but not with phosphatidylserine. Further, annexin V (in the absence of Ca(2+)) or heparin outcompetes Alboserpin for binding to phospholipid vesicles, suggesting a common binding site. Consistent with its activity, Alboserpin blocks prothrombinase activity and increases both prothrombin time and activated partial thromboplastin time in vitro or ex vivo. Furthermore, Alboserpin prevents thrombus formation provoked by ferric chloride injury of the carotid artery and increases bleeding in a dose-dependent manner. Alboserpin emerges as an atypical serpin that targets FXa and displays unique phospholipid specificity. It conceivably uses heparin and phosphatidylcholine/phosphatidylethanolamine as anchors to increase protein localization and effective concentration at sites of injury, cell activation, or inflammation.
Resumo:
The integration of nanostructured films containing biomolecules and silicon-based technologies is a promising direction for reaching miniaturized biosensors that exhibit high sensitivity and selectivity. A challenge, however, is to avoid cross talk among sensing units in an array with multiple sensors located on a small area. In this letter, we describe an array of 16 sensing units, of a light-addressable potentiometric sensor (LAPS), which was made with layer-by-Layer (LbL) films of a poly(amidomine) dendrimer (PAMAM) and single-walled carbon nanotubes (SWNTs), coated with a layer of the enzyme penicillinase. A visual inspection of the data from constant-current measurements with liquid samples containing distinct concentrations of penicillin, glucose, or a buffer indicated a possible cross talk between units that contained penicillinase and those that did not. With the use of multidimensional data projection techniques, normally employed in information Visualization methods, we managed to distinguish the results from the modified LAPS, even in cases where the units were adjacent to each other. Furthermore, the plots generated with the interactive document map (IDMAP) projection technique enabled the distinction of the different concentrations of penicillin, from 5 mmol L(-1) down to 0.5 mmol L(-1). Data visualization also confirmed the enhanced performance of the sensing units containing carbon nanotubes, consistent with the analysis of results for LAPS sensors. The use of visual analytics, as with projection methods, may be essential to handle a large amount of data generated in multiple sensor arrays to achieve high performance in miniaturized systems.
Resumo:
This paper deals with semi-global C(k)-solvability of complex vector fields of the form L = partial derivative/partial derivative t + x(r) (a(x) + ib(x))partial derivative/partial derivative x, r >= 1, defined on Omega(epsilon) = (-epsilon, epsilon) x S(1), epsilon > 0, where a and b are C(infinity) real-valued functions in (-epsilon, epsilon). It is shown that the interplay between the order of vanishing of the functions a and b at x = 0 influences the C(k)-solvability at Sigma = {0} x S(1). When r = 1, it is permitted that the functions a and b of L depend on the x and t variables, that is, L = partial derivative/partial derivative t + x(a(x, t) + ib(x, t))partial derivative/partial derivative x, where (x, t) is an element of Omega(epsilon).
Resumo:
We present a version of the Poincare-Bendixson Theorem on the Klein bottle K(2) for continuous vector fields. As a consequence, we obtain the fact that K(2) does not admit continuous vector fields having a omega-recurrent injective trajectory.
Resumo:
In this paper, we classify all the global phase portraits of the quadratic polynomial vector fields having a rational first integral of degree 3. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we present results for the systematic study of reversible-equivariant vector fields - namely, in the simultaneous presence of symmetries and reversing symmetries - by employing algebraic techniques from invariant theory for compact Lie groups. The Hilbert-Poincare series and their associated Molien formulae are introduced,and we prove the character formulae for the computation of dimensions of spaces of homogeneous anti-invariant polynomial functions and reversible-equivariant polynomial mappings. A symbolic algorithm is obtained for the computation of generators for the module of reversible-equivariant polynomial mappings over the ring of invariant polynomials. We show that this computation can be obtained directly from a well-known situation, namely from the generators of the ring of invariants and the module of the equivariants. (C) 2008 Elsevier B.V, All rights reserved.
Resumo:
The goal of this paper is study the global solvability of a class of complex vector fields of the special form L = partial derivative/partial derivative t + (a + ib)(x)partial derivative/partial derivative x, a, b epsilon C(infinity) (S(1) ; R), defined on two-torus T(2) congruent to R(2)/2 pi Z(2). The kernel of transpose operator L is described and the solvability near the characteristic set is also studied. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
We study the Gevrey solvability of a class of complex vector fields, defined on Omega(epsilon) = (-epsilon, epsilon) x S(1), given by L = partial derivative/partial derivative t + (a(x) + ib(x))partial derivative/partial derivative x, b not equivalent to 0, near the characteristic set Sigma = {0} x S(1). We show that the interplay between the order of vanishing of the functions a and b at x = 0 plays a role in the Gevrey solvability. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We introduce a flexible technique for interactive exploration of vector field data through classification derived from user-specified feature templates. Our method is founded on the observation that, while similar features within the vector field may be spatially disparate, they share similar neighborhood characteristics. Users generate feature-based visualizations by interactively highlighting well-accepted and domain specific representative feature points. Feature exploration begins with the computation of attributes that describe the neighborhood of each sample within the input vector field. Compilation of these attributes forms a representation of the vector field samples in the attribute space. We project the attribute points onto the canonical 2D plane to enable interactive exploration of the vector field using a painting interface. The projection encodes the similarities between vector field points within the distances computed between their associated attribute points. The proposed method is performed at interactive rates for enhanced user experience and is completely flexible as showcased by the simultaneous identification of diverse feature types.
Resumo:
This paper proposes an improved voice activity detection (VAD) algorithm using wavelet and support vector machine (SVM) for European Telecommunication Standards Institution (ETS1) adaptive multi-rate (AMR) narrow-band (NB) and wide-band (WB) speech codecs. First, based on the wavelet transform, the original IIR filter bank and pitch/tone detector are implemented, respectively, via the wavelet filter bank and the wavelet-based pitch/tone detection algorithm. The wavelet filter bank can divide input speech signal into several frequency bands so that the signal power level at each sub-band can be calculated. In addition, the background noise level can be estimated in each sub-band by using the wavelet de-noising method. The wavelet filter bank is also derived to detect correlated complex signals like music. Then the proposed algorithm can apply SVM to train an optimized non-linear VAD decision rule involving the sub-band power, noise level, pitch period, tone flag, and complex signals warning flag of input speech signals. By the use of the trained SVM, the proposed VAD algorithm can produce more accurate detection results. Various experimental results carried out from the Aurora speech database with different noise conditions show that the proposed algorithm gives considerable VAD performances superior to the AMR-NB VAD Options 1 and 2, and AMR-WB VAD. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Most studies involving statistical time series analysis rely on assumptions of linearity, which by its simplicity facilitates parameter interpretation and estimation. However, the linearity assumption may be too restrictive for many practical applications. The implementation of nonlinear models in time series analysis involves the estimation of a large set of parameters, frequently leading to overfitting problems. In this article, a predictability coefficient is estimated using a combination of nonlinear autoregressive models and the use of support vector regression in this model is explored. We illustrate the usefulness and interpretability of results by using electroencephalographic records of an epileptic patient.