967 resultados para Size reduction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rough hydrophobic surface when immersed in water can result in a ``Cassie'' state of wetting in which the water is in contact with both the solid surface and the entrapped air. The sustainability of the entrapped air on such surfaces is important for underwater applications such as reduction of flow resistance in microchannels and drag reduction of submerged bodies such as hydrofoils. We utilize an optical technique based oil total internal reflection of light at the water-air interface to quantify the spatial distribution of trapped air oil such a surface and its variation with immersion time. With this technique, we evaluate the sustainability of the Cassie state on hydrophobic surfaces with four different kinds of textures. The textures studied are regular arrays of pillars, ridges, and holes that were created in silicon by a wet etching technique, and also a texture of random craters that was obtained through electrodischarge machining of aluminum. These surfaces were rendered hydrophobic with a self-assembled layer Of fluorooctyl trichlorosilane. Depending on the texture, the size and shape of the trapped air pockets were found to vary. However, irrespective of the texture, both the size and the number of air pockets were found to decrease with time gradually and eventually disappear, suggesting that the sustainability of the ``Cassie'' state is finite for all the microstructures Studied. This is possibly due to diffusion of air from the trapped air pockets into the water. The time scale for disappearance of air pockets was found to depend on the kind of microstructure and the hydrostatic pressure at the water-air interface. For the surface with a regular array of pillars, the air pockets were found to be in the form of a thin layer perched on top of the pillars with a large lateral extent compared to the spacing between pillars. For other surfaces studied, the air pockets are smaller and are of the same order as the characteristic length scale of the texture. Measurements for the surface with holes indicate that the time for air-pocket disappearance reduces as the hydrostatic pressure is increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of a particle size distribution on the fractional reaction has been analysed. The analysis shows that for non-isothermal TG the activation energy and frequency factor evaluated from the fractional reaction by conventional method depend on the particle size distribution, and this may lead to a kinetic compensating effect. Particle size distribution may also lead to an erroneous conclusion about the change in the mechanism of reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wear of dies is a serious problem in the forging industry. The materials used for the dies are generally expensive steel alloys and the dies require costly heat treatment and surface finishing operations. Degeneration of the die profile implies rejection of forged components and necessitates resinking or replacement of the die. Measures which reduce wear of the die can therefore aid in the reduction of production costs. The work reported here is the first phase of a study of the causes of die wear in forging production where the batch size is small and the machine employed is a light hammer. This is a problem characteristic of the medium and small scale area of the forging industry where the cost of dies is a significant proportion of the total capital investment. For the same energy input and under unlubricated conditions, die wear has been found to be sensitive to forging temperature; in cold forging the yield strength of the die material is the prime factor governing the degeneration of the die profile, whilst in hot forging the wear resistance of the die material is the main factor which determines the rate of die wear. At an intermediate temperature, such as that characteristic of warm forging, the die wear is found to be less than that in both cold and hot forging. This preliminary study therefore points to the fact that the forging temperature must be taken into account in the selection of die material. Further, the forging industry must take serious note of the warm forging process, as it not only provides good surface finish, as claimed by many authors, but also has an inherent tendency to minimize die wear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In most non-mammalian vertebrates, such as fish and reptiles, teeth are replaced continuously. However, tooth replacement in most mammals, including human, takes place only once and further renewal is apparently inhibited. It is not known how tooth replacement is genetically regulated, and little is known on the physiological mechanism and evolutionary reduction of tooth replacement in mammals. In this study I have attempted to address these questions. In a rare human condition cleidocranial dysplasia, caused by a mutation in a Runt domain transcription factor Runx2, tooth replacement is continued. Runx2 mutant mice were used to investigate the molecular mechanisms of Runx2 function. Microarray analysis from dissected embryonic day 14 Runx2 mutant and wild type dental mesenchymes revealed many downstream targets of Runx2, which were validated using in situ hybridization and tissue culture methods. Wnt signaling inhibitor Dkk1 was identified as a candidate target, and in tissue culture conditions it was shown that Dkk1 is induced by FGF4 and this induction is Runx2 dependent. These experiments demonstrated a connection between Runx2, FGF and Wnt signaling in tooth development and possibly also in tooth replacement. The role of Wnt signaling in tooth replacement was further investigated by using a transgenic mouse model where Wnt signaling mediator β-catenin is continuously stabilized in dental epithelium. This stabilization led to activated Wnt signaling and to the formation of multiple enamel knots. In vitro and transplantation experiments were performed to examine the process of extra tooth formation. We showed that new teeth were continuously generated and that new teeth form from pre-existing teeth. A morphodynamic activator-inhibitor model was used to simulate enamel knot formation. By increasing the intrinsic production rate of the activator (β-catenin), the multiple enamel knot phenotype was reproduced by computer simulations. It was thus concluded that β-catenin acts as an upstream activator of enamel knots, closely linking Wnt signaling to the regulation of tooth renewal. As mice do not normally replace teeth, we used other model animals to investigate the physiological and genetic mechanisms of tooth replacement. Sorex araneus, the common shrew was earlier reported to have non-functional tooth replacement in all antemolar tooth positions. We showed by histological and gene expression studies that there is tooth replacement only in one position, the premolar 4 and that the deciduous tooth is diminished in size and disappears during embryogenesis without becoming functional. The growth rates of deciduous and permanent premolar 4 were measured and it was shown by competence inference that the early initiation of the replacement tooth in relation to the developmental stage of the deciduous tooth led to the inhibition of deciduous tooth morphogenesis. It was concluded that the evolutionary loss of deciduous teeth may involve the early activation of replacement teeth, which in turn suppress their predecessors. Mustela putorius furo, the ferret, has a dentition that resembles that of the human as ferrets have teeth that belong to all four tooth families, and all the antemolar teeth are replaced once. To investigate the replacement mechanism, histological serial sections from different embryonic stages were analyzed. It was noticed that tooth replacement is a process which involves the growth and detachment of the dental lamina from the lingual cervical loop of the deciduous tooth. Detachment of the deciduous tooth leads to a free successional dental lamina, which grows deeper into the mesenchyme, and later buds the replacement tooth. A careful 3D analysis of serial histological sections was performed and it was shown that replacement teeth are initiated from the successional dental lamina and not from the epithelium of the deciduous tooth. The molecular regulation of tooth replacement was studied and it was shown by examination of expression patterns of candidate regulatory genes that BMP/Wnt inhibitor Sostdc1 was strongly expressed in the buccal aspect of the dental lamina, and in the intersection between the detaching deciduous tooth and the successional dental lamina, suggesting a role for Sostdc1 in the process of detachment. Shh was expressed in the enamel knot and in the inner enamel epithelium in both generations of teeth supporting the view that the morphogenesis of both generations of teeth is regulated by similar mechanisms. In summary, histological and molecular studies on different model animals and transgenic mouse models were used to investigate tooth replacement. This thesis work has significantly contributed to the knowledge on the physiological mechanisms and molecular regulation of tooth replacement and its evolutionary suppression in mammals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By “phenotypic plasticity” we refer to the capacity of a genotype to exhibit different phenotypes, whether in the same or in different environments. We have previously demonstrated that phenotypic plasticity can improve the degree of adaptation achieved via natural selection (Behera & Nanjundiah, 1995). That result was obtained from a genetic algorithm model of haploid genotypes (idealized as one-dimensional strings of genes) evolving in a fixed environment. Here, the dynamics of evolution is examined under conditions of a cyclically varying environment. We find that the rate of evolution, as well as the extent of adaptation (as measured by mean population fitness) is lowered because of environmental cycling. The decrease is adaptation caused by a varying environment can, however, be partly or wholly compensated by an increase in the degree of plasticity that a genotype is capable of. Also, the reduction of population fitness caused by a variable environment can be partially offset by decreasing the total number of genetic loci. We conjecture that an increase in genome size may have been among the factors responsible for the evolution of phenotypic plasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical reduction of hydrogen peroxide is studied on a sand-blasted stainless steel (SSS)electrode in an aqueous solution of NaClO4.The cyclic voltammetric reduction of H2O2 at low concentrations is characterized by a cathodic peak at -0 center dot 40 V versus standard calomel electrode(SCE).Cyclic voltammetry is studied by varying the concentration of H2O2 in the range from 0 center dot 2 mM to 20 mM and the sweep rate in the range from 2 to 100 mV s(-1)Voltammograms at concentrations of H2O2 higher than 2 mM or at high sweep rates consist of an additional current peak, which may be due to the reduction of adsorbed species formed during the reduction of H2O2. Amperometric determination of H2O2 at -0 center dot 50 V vs SCEprovides the detection limit of 5 A mu M H2O2. A plot of current density versus concentration has two segments suggesting a change in the mechanism of H2O2 reduction at concentrations of H2O2 a parts per thousand yen 2 mM. From the rotating disc electrode study, diffusion co-efficient of H2O2 and rate constant for reduction of H2O2 are evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Industrial ecology is an important field of sustainability science. It can be applied to study environmental problems in a policy relevant manner. Industrial ecology uses ecosystem analogy; it aims at closing the loop of materials and substances and at the same time reducing resource consumption and environmental emissions. Emissions from human activities are related to human interference in material cycles. Carbon (C), nitrogen (N) and phosphorus (P) are essential elements for all living organisms, but in excess have negative environmental impacts, such as climate change (CO2, CH4 N2O), acidification (NOx) and eutrophication (N, P). Several indirect macro-level drivers affect emissions change. Population and affluence (GDP/capita) often act as upward drivers for emissions. Technology, as emissions per service used, and consumption, as economic intensity of use, may act as drivers resulting in a reduction in emissions. In addition, the development of country-specific emissions is affected by international trade. The aim of this study was to analyse changes in emissions as affected by macro-level drivers in different European case studies. ImPACT decomposition analysis (IPAT identity) was applied as a method in papers I III. The macro-level perspective was applied to evaluate CO2 emission reduction targets (paper II) and the sharing of greenhouse gas emission reduction targets (paper IV) in the European Union (EU27) up to the year 2020. Data for the study were mainly gathered from official statistics. In all cases, the results were discussed from an environmental policy perspective. The development of nitrogen oxide (NOx) emissions was analysed in the Finnish energy sector during a long time period, 1950 2003 (paper I). Finnish emissions of NOx began to decrease in the 1980s as the progress in technology in terms of NOx/energy curbed the impact of the growth in affluence and population. Carbon dioxide (CO2) emissions related to energy use during 1993 2004 (paper II) were analysed by country and region within the European Union. Considering energy-based CO2 emissions in the European Union, dematerialization and decarbonisation did occur, but not sufficiently to offset population growth and the rapidly increasing affluence during 1993 2004. The development of nitrogen and phosphorus load from aquaculture in relation to salmonid consumption in Finland during 1980 2007 was examined, including international trade in the analysis (paper III). A regional environmental issue, eutrophication of the Baltic Sea, and a marginal, yet locally important source of nutrients was used as a case. Nutrient emissions from Finnish aquaculture decreased from the 1990s onwards: although population, affluence and salmonid consumption steadily increased, aquaculture technology improved and the relative share of imported salmonids increased. According to the sustainability challenge in industrial ecology, the environmental impact of the growing population size and affluence should be compensated by improvements in technology (emissions/service used) and with dematerialisation. In the studied cases, the emission intensity of energy production could be lowered for NOx by cleaning the exhaust gases. Reorganization of the structure of energy production as well as technological innovations will be essential in lowering the emissions of both CO2 and NOx. Regarding the intensity of energy use, making the combustion of fuels more efficient and reducing energy use are essential. In reducing nutrient emissions from Finnish aquaculture to the Baltic Sea (paper III) through technology, limits of biological and physical properties of cultured fish, among others, will eventually be faced. Regarding consumption, salmonids are preferred to many other protein sources. Regarding trade, increasing the proportion of imports will outsource the impacts. Besides improving technology and dematerialization, other viewpoints may also be needed. Reducing the total amount of nutrients cycling in energy systems and eventually contributing to NOx emissions needs to be emphasized. Considering aquaculture emissions, nutrient cycles can be partly closed through using local fish as feed replacing imported feed. In particular, the reduction of CO2 emissions in the future is a very challenging task when considering the necessary rates of dematerialisation and decarbonisation (paper II). Climate change mitigation may have to focus on other greenhouse gases than CO2 and on the potential role of biomass as a carbon sink, among others. The global population is growing and scaling up the environmental impact. Population issues and growing affluence must be considered when discussing emission reductions. Climate policy has only very recently had an influence on emissions, and strong actions are now called for climate change mitigation. Environmental policies in general must cover all the regions related to production and impacts in order to avoid outsourcing of emissions and leakage effects. The macro-level drivers affecting changes in emissions can be identified with the ImPACT framework. Statistics for generally known macro-indicators are currently relatively well available for different countries, and the method is transparent. In the papers included in this study, a similar method was successfully applied in different types of case studies. Using transparent macro-level figures and a simple top-down approach are also appropriate in evaluating and setting international emission reduction targets, as demonstrated in papers II and IV. The projected rates of population and affluence growth are especially worth consideration in setting targets. However, sensitivities in calculations must be carefully acknowledged. In the basic form of the ImPACT model, the economic intensity of consumption and emission intensity of use are included. In seeking to examine consumption but also international trade in more detail, imports were included in paper III. This example demonstrates well how outsourcing of production influences domestic emissions. Country-specific production-based emissions have often been used in similar decomposition analyses. Nevertheless, trade-related issues must not be ignored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A chemoselective, neutral, and efficient strategy for the reduction of azides to corresponding amines catalyzed by dioxobis(N,N,-diethyldithiocarbamato) molybdenum complex (1, MoO2[S2CNEt2](2)) in the presence of phenylsilane is discovered. This chemoselective reduction strategy tolerates a variety of reducible functional groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the mating behaviour of the primi-tively eusocial wasp Ropalidia marginata and the factors that may influence sperm transfer. By introducing a male and a female R. marginata into ventilated transparent plastic boxes, we were able to observe mating behaviour, and it involved mounting and short or long conjugation of the wasps. Dissection of female wasps after the observation indicated that long conjugation is a good behavioural predictor of sperm transfer. This finding makes it possible to obtain mated females without dissecting them every time. We tested the effect of age, season, relatedness, body size and female's ovarian status on mating. Under laboratory conditions, mating success declined rapidly below and above the ages 5-20 days. Within this age range mating success was significantly low in December compared to other months tested. There was no nestmate discrimination, and there was no influence of male and female body size or of the ovarian state of the female on the probability of sperm transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Settling, dewatering and filtration of flocs are important steps in industry to remove solids and improve subsequent processing. The influence of non-sucrose impurities (Ca2+, Mg2+, phosphate and aconitic acid) on calcium phosphate floc structure (scattering exponent, Sf), size and shape were examined in synthetic and authentic sugar juices using X-ray diffraction techniques. In synthetic juices, Sf decreases with increasing phosphate concentration to values where loosely bound and branched flocs are formed for effective trapping and removal of impurities. Although, Sf did not change with increasing aconitic acid concentration, the floc size significantly decreased reducing the ability of the flocs to remove impurities. In authentic juices, the flocs structures were marginally affected by increasing proportions of non-sucrose impurities. However, optical microscopy indicated the formation of well-formed macro-floc network structures in sugar cane juices containing lower proportions of non-sucrose impurities. These structures are better placed to remove suspended colloidal solids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chips were produced by orthogonal Cutting of cast pure magnesium billet with three different tool rake angles viz., -15 degrees, -5 degrees and +15 degrees on a lathe. Chip consolidation by solid state recycling technique involved cold compaction followed by hot extrusion. The extruded products were characterized for microstructure and mechanical properties. Chip-consolidated products from -15 degrees rake angle tools showed 19% increase in tensile strength, 60% reduction ingrain size and 12% increase in hardness compared to +15 degrees rake chip-consolidated product indicating better chip bonding and grain refinement. Microstructure of the fracture specimen Supports the abovefinding. On the overall, the present work high lights the importance of tool take angle in determining the quality of the chip-consolidated products. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A direct borohydride-hydrogen peroxide fuel cell employing carbon-supported Prussian Blue (PB) as mediated electron-transfer cathode catalyst is reported. While operating at 30 °C, the direct borohydride-hydrogen peroxide fuel cell employing carbon-supported PB cathode catalyst shows superior performance with the maximum output power density of 68 mW cm−2 at an operating voltage of 1.1 V compared to direct borohydride-hydrogen peroxide fuel cell employing the conventional gold-based cathode with the maximum output power density of 47 mW cm−2 at an operating voltage of 0.7 V. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Analysis (EDAX) suggest that anchoring of Cetyl-Trimethyl Ammonium Bromide (CTAB) as a surfactant moiety on carbon-supported PB affects the catalyst morphology. Polarization studies on direct borohydride-hydrogen peroxide fuel cell with carbon-supported CTAB-anchored PB cathode exhibit better performance with the maximum output power density of 50 mW cm−2 at an operating voltage of 1 V than the direct borohydride-hydrogen peroxide fuel cell with carbon-supported Prussian Blue without CTAB with the maximum output power density of 29 mW cm−2 at an operating voltage of 1 V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P-Nickel hydroxide comprises a long range periodic arrangement of atoms with a stacking sequence of AC AC AC-having an ideal composition Ni(OH)(2). Variation in the preparative conditions can lead to the changes in the stacking sequence (AC AC BA CB AC AC or AC AC AB AC AC) This type of variation in stacking sequence can result in the formation of stacking fault in nickel hydroxide. The stability of the stacking fault depends on the free energy content of the sample. Stacking faults in nickel hydroxide is essential for better electrochemical activity. Also there are reports correlating particle size to the better electrochemical activity. Here we present the effect of crystallite size on the stacking faulted nickel hydroxide samples. The electrochemical performance of stacking faulted nickel hydroxide with small crystallite size exchanges 0.8e/Ni, while the samples with larger crystallite size exchange 0.4e/Ni. Hence a right combination of crystallite size and stacking fault content has to be controlled for good electrochemical activity of nickel hydroxide. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to understand self-diffusion (D) of a charged, flexible, and porous nanoscopic molecule in water, we carry out very long, fully atomistic molecular dynamics simulation of PAMAM dendrimer up to eight generations in explicit salt water under varying pH. We find that while the radius of gyration (R-g) varies as N-1/3, the self-diffusion constant (D) scales, surprisingly, as N-alpha, with alpha=0.39 at high pH and 0.5 at neutral pH, indicating a dramatic breakdown of Stokes-Einstein relation for diffusion of charged nanoscopic molecules. The variation in D as a function of radius of gyration demonstrates the importance of treating water and ions explicitly in the diffusion process of a flexible nanoscopic molecule. In agreement with recent experiments, the self-diffusion constant increases with pH, revealing the importance of dielectric friction in the diffusion process. The shape of a dendrimer is found to fluctuate on a nanosecond time scale. We argue that this flexibility (and also the porosity) of the dendrimer may play an important role in determining the mean square displacement of the dendrimer and the breakdown of the Stokes-Einstein relation between diffusion constant and the radius.