2 resultados para Size reduction
em CaltechTHESIS
Resumo:
On the materials scale, thermoelectric efficiency is defined by the dimensionless figure of merit zT. This value is made up of three material components in the form zT = Tα2/ρκ, where α is the Seebeck coefficient, ρ is the electrical resistivity, and κ is the total thermal conductivity. Therefore, in order to improve zT would require the reduction of κ and ρ while increasing α. However due to the inter-relation of the electrical and thermal properties of materials, typical routes to thermoelectric enhancement come in one of two forms. The first is to isolate the electronic properties and increase α without negatively affecting ρ. Techniques like electron filtering, quantum confinement, and density of states distortions have been proposed to enhance the Seebeck coefficient in thermoelectric materials. However, it has been difficult to prove the efficacy of these techniques. More recently efforts to manipulate the band degeneracy in semiconductors has been explored as a means to enhance α.
The other route to thermoelectric enhancement is through minimizing the thermal conductivity, κ. More specifically, thermal conductivity can be broken into two parts, an electronic and lattice term, κe and κl respectively. From a functional materials standpoint, the reduction in lattice thermal conductivity should have a minimal effect on the electronic properties. Most routes incorporate techniques that focus on the reduction of the lattice thermal conductivity. The components that make up κl (κl = 1/3Cνl) are the heat capacity (C), phonon group velocity (ν), and phonon mean free path (l). Since the difficulty is extreme in altering the heat capacity and group velocity, the phonon mean free path is most often the source of reduction.
Past routes to decreasing the phonon mean free path has been by alloying and grain size reduction. However, in these techniques the electron mobility is often negatively affected because in alloying any perturbation to the periodic potential can cause additional adverse carrier scattering. Grain size reduction has been another successful route to enhancing zT because of the significant difference in electron and phonon mean free paths. However, grain size reduction is erratic in anisotropic materials due to the orientation dependent transport properties. However, microstructure formation in both equilibrium and nonequilibrium processing routines can be used to effectively reduce the phonon mean free path as a route to enhance the figure of merit.
This work starts with a discussion of several different deliberate microstructure varieties. Control of the morphology and finally structure size and spacing is discussed at length. Since the material example used throughout this thesis is anisotropic a short primer on zone melting is presented as an effective route to growing homogeneous and oriented polycrystalline material. The resulting microstructure formation and control is presented specifically in the case of In2Te3-Bi2Te3 composites and the transport properties pertinent to thermoelectric materials is presented. Finally, the transport and discussion of iodine doped Bi2Te3 is presented as a re-evaluation of the literature data and what is known today.
Resumo:
The motion of a single Brownian particle of arbitrary size through a dilute colloidal dispersion of neutrally buoyant bath spheres of another characteristic size in a Newtonian solvent is examined in two contexts. First, the particle in question, the probe particle, is subject to a constant applied external force drawing it through the suspension as a simple model for active and nonlinear microrheology. The strength of the applied external force, normalized by the restoring forces of Brownian motion, is the Péclet number, Pe. This dimensionless quantity describes how strongly the probe is upsetting the equilibrium distribution of the bath particles. The mean motion and fluctuations in the probe position are related to interpreted quantities of an effective viscosity of the suspension. These interpreted quantities are calculated to first order in the volume fraction of bath particles and are intimately tied to the spatial distribution, or microstructure, of bath particles relative to the probe. For weak Pe, the disturbance to the equilibrium microstructure is dipolar in nature, with accumulation and depletion regions on the front and rear faces of the probe, respectively. With increasing applied force, the accumulation region compresses to form a thin boundary layer whose thickness scales with the inverse of Pe. The depletion region lengthens to form a trailing wake. The magnitude of the microstructural disturbance is found to grow with increasing bath particle size -- small bath particles in the solvent resemble a continuum with effective microviscosity given by Einstein's viscosity correction for a dilute dispersion of spheres. Large bath particles readily advect toward the minimum approach distance possible between the probe and bath particle, and the probe and bath particle pair rotating as a doublet is the primary mechanism by which the probe particle is able to move past; this is a process that slows the motion of the probe by a factor of the size ratio. The intrinsic microviscosity is found to force thin at low Péclet number due to decreasing contributions from Brownian motion, and force thicken at high Péclet number due to the increasing influence of the configuration-averaged reduction in the probe's hydrodynamic self mobility. Nonmonotonicity at finite sizes is evident in the limiting high-Pe intrinsic microviscosity plateau as a function of bath-to-probe particle size ratio. The intrinsic microviscosity is found to grow with the size ratio for very small probes even at large-but-finite Péclet numbers. However, even a small repulsive interparticle potential, that excludes lubrication interactions, can reduce this intrinsic microviscosity back to an order one quantity. The results of this active microrheology study are compared to previous theoretical studies of falling-ball and towed-ball rheometry and sedimentation and diffusion in polydisperse suspensions, and the singular limit of full hydrodynamic interactions is noted.
Second, the probe particle in question is no longer subject to a constant applied external force. Rather, the particle is considered to be a catalytically-active motor, consuming the bath reactant particles on its reactive face while passively colliding with reactant particles on its inert face. By creating an asymmetric distribution of reactant about its surface, the motor is able to diffusiophoretically propel itself with some mean velocity. The effects of finite size of the solute are examined on the leading order diffusive microstructure of reactant about the motor. Brownian and interparticle contributions to the motor velocity are computed for several interparticle interaction potential lengths and finite reactant-to-motor particle size ratios, with the dimensionless motor velocity increasing with decreasing motor size. A discussion on Brownian rotation frames the context in which these results could be applicable, and future directions are proposed which properly incorporate reactant advection at high motor velocities.