968 resultados para Matemáticos
Resumo:
Se estudia la resolución de problemas matemáticos por parejas de alumnos, concretamente de la interacción entre alumnos durante el proceso. Se pretende la caracterización de las interacciones de pares de alumnos, el establecimiento de un método de análisis de dichos procesos, la identificación de las características de los problemas que influyen en la forma de resolución y el análisis de la influencia de los procesos de resolución de problemas que comparan áreas de superficies planas en la evolución del conocimiento de los alumnos. Para ello se utiliza fundamentalmente el método empírico centrándose en la comunicación verbal entre los alumnos.
Resumo:
Se analiza el papel de los símbolos como instrumentos en el proceso cognitivo de aprendizaje de conceptos matemáticos. Se expone una visión de la didáctica de las matemáticas como una ciencia antropológica frente a la propia epistemología del puro conocimiento matemático, en la que se se hace incapié en los procesos cognitivos de los elementos involucrados en lugar de estudiar la materia dada. Para ello se clasifican las herramientas de enseñanza en ostensivas y no-ostensivas, y se explican las características de cada una de ellas de cara a su comprensión.
Resumo:
Se analizan las cuestiones relativas a la comprensión y representación del conocimiento matemático. Para ello en primer lugar se analiza la historia de los matemáticos y filósofos y sus concepciones de la comprensión y la representación del conocimiento. A continuación se analiza el concepto de representación del concepto matemático en los trabajos de investigación presentados en los años 80 y 90. También se analiza el fenómeno de la multiplicidad de representaciones para un mismo concepto representado, de manera que no siempre coinciden los símbolos usados en distintas culturas. Por último, se dejan abiertas para el debate cuestiones relativas a la importancia de la dicotomía objeto-representación en la investigación de la didáctica de las matemáticas.
Resumo:
Se realiza una réplica al trabajo 'Fenómenos y problemas en la didáctica de las matemáticas' exponiendo la falta de generalidad de algunos problemas que en el trabajo se presentan como generales. Queda patente que en varios de los casos no hay razón para distinguir entre problemas generales y específicos debido a que el tratamiento de los problemas específicos incluye también el de los generales. Falta por tanto una delimitación clara del marco epistemológico de la didáctica de las matemáticas. Finalmente, se expone el desconocimiento de la teoría antropológica usada por el ponente estudiado. A pesar de este desconocimiento por parte del ponente, tiene lugar un cierto entendimiento de la teoría debido a que está expuesta como un sistema de fundamentos matemáticos.
Resumo:
Se estudia el proceso de aprendizaje de los estudiantes de bachiller en materia de demostraciones matemáticas. Se describen criterios para determinar que una demostración matemática se han entendido. Entre ellos se encuentran entender el enunciado, entender los pasos de la demostración y comprender globalmente la solución como una respuesta universal al enunciado. Se estudia que tipos de demostraciones son aceptadas como tales por los alumnos. Se encuentran alumnos que admiten pruebas Empíricas, analíticas, deductivas, basadas en un sólo caso y también basadas en varios casos. Se tiene, por lo tanto, que existe una diveridad de tipos de pruebas y que la aceptación de unas y otras por parte de los alumnos no es excluyente. Se estudia la capacidad de los alumnos para discriminar demostraciones de otros enunciados matemáticos. De los resultados se deduce que la mayoría de los alumnos no son capaces de distinguir una demostración de un ejemplo concreto de una demostración real. Se estudia por último la manera en que la redacción de los enunciados afecta a la manera en que los alumnos lo entienden. Se concluye que un mismo enunciado puede ser interpretado de múltiples maneras cambiando la redacción del mismo o simplemente utilizando los elementos del lenguaje de la lógica que más ambiguos resulten en el lenguaje natural.
Resumo:
Se explican los diferentes tipos de demostraciones y su efectividad en la docencia. Se expone la tendencia de los docentes en matemáticas al uso de demostraciones extrictamente formales. Se explica que la procedencia de dicha tendencia es la consideración de las demostraciones formales como las únicas realmente fiables en los entornos matemáticos. Se expone el contraste entre la forma de razonar de los alumnos y las explicaciones de los profesores. Dicho contraste consiste en los tipos de demostración entendidos como correctos por cada uno de ellos. Se explica que los alumnos entienden las demostraciones empíricas pero tienen muchos problemas para aceptar las demostraciones puramente abstractas y formales. Se propone, por lo tanto, cambiar el modelo de enseñanza hacia uno que contemple ambos tipos de demostración.
Resumo:
Se analiza la corrección de utilidad de los ejemplos utilizados en los problemas matemáticos. El objetivo es comprender si los enunciados planteados en los libros de texto de matemáticas utilizan ejemplos que los alumnos comprendan y que les sirvan para aprender a abstraer correctamente los conceptos. Se analizan dichos enunciados en materia de divisivilidad en el ámbito de los enteros. Se analizan varios enunciados de problemas relativos al Máximo Común Divisor (MCD) y al Mínimo Común Múltiplo (mcm). Se analizan también las respuestas de los alumnos al resolver dichos problemas. Se comprueba que los ejemplos propuestos tienen un universo del discurso que no suele tener sentido para los estudiantes. Se observa que por este motivo los estudiantes no adquieren correctamente la capacidad de abstraer los enunciados y transformarlos en proposiciones matemáticas. Se observa que todo esto resulta mucho más evidente cuando tienen que enfrentarse a un problema real en vez de un problema matemático.
Resumo:
Se describen dos modelos de organización matemática en secundaria. Se entiende por modelo de organización matemática un conjunto de pasos lógicos a realizar en la resolución de problemas matemáticos. En cada modelo se describen un conjunto de técnicas de resolución para los problemas de derivación que se resuelven en secundaria. Los modelos de organización matemática se denominan puntual y local. Se denomina modelo de organización puntual a aquel que permite resolver una tarea sencilla. Dicho de otra manera, sería la técnica empleada en la resolución de los problemas más simples. Cuando un problema es demasiado grande requiere el uso de una organización matemática local para su resolución. Una organización matemática local no es más que un conjunto de organizaciones matemáticas puntuales encadenadas para dar solución a un problema más grande. Se exponen algunos ejemplos de organizaciones matemáticas de ambos tipos que podrían implantarse en secundaria.
Resumo:
Se resumen las reuniones realizadas por el grupo de didáctica de la matemática como disciplina científica. El trabajo del grupo transcurre a lo largo de dos sesiones. En la primera se presenta el trabajo 'Presentación de contenidos matemáticos mediante una estructura genérica y modular. Experiencia en el marco de la formación del profesorado'. Dicho trabajo propone una forma de estructurar la enseñanza basado en módulos independientes que se agrupan para formar contenidos adaptables a cada alumno. Queda fuera de la sesión, por indisposición de la ponente, la exposión del trabajo 'El proceso de algebrización de Organizaciones Matemáticas Escolares'. Durante la segunda sesión se exponen los trabajos 'Dos experiencias renovadoras en la enseñanza de la aritmética : Pestalozzi y la enseñanza mutua' y 'Presentación de un software de tratamiento gráfico de datos a través de su clasificación'. El primero trata sobre las distintas maneras de enseñar las matemáticas en el primer cuarto del siglo XIX. El segundo trabajo trata sobre un software para la enseñanza de las matemáticas basado en las representaciones visuales de los elementos. La exposición de todos los trabajos es seguida de sus correspondientes debates.
Resumo:
Se analizan los recursos, heurísticos y estrategias de control que utilizan los alumnos al resolver problemas matemáticos. Se realizaron pruebas a alumnos de 12 y 14 años. Se observa que no existen diferencias notables entre las respuestas dadas por los alumnos en función de su edad. Como consecuencia de ello, se sugiere que sería importante reflexionar sobre la utilidad de los conocimientos adquiridos por los estudiantes.
Resumo:
Se estudia la influencia de la Compañía de Jesús en el sistema educativo español a lo largo del siglo XVIII. Se analizan los métodos, libros y conceptos que se usaban en este período de la historia educativa española. Se presenta un avance de un estudio histórico-crítico sobre libros de textos matemáticos, donde se investigan los conceptos de cantidad, número y número negativo.
Resumo:
Se estudia la relación entre las matemáticas y la sociedad a lo largo de la historia. Se explican las normas que ha habido sobre los números negativos. Cuando los números negativos surgieron en las sociedades clásicas los matemáticos se dieron cuenta de que no existía ninguna realidad tangible que se correspondiera con ellos. Por este motivo pasaron mucho tiempo prohibidos. Se usaban de manera clandestina pero los matemáticos no podían admitir que lo hacían sin poner en tela de juicio la base de toda su ciencia. Se hace un repaso de todas las normas sociales que han acompañado a los números negativos a lo largo de su historia.
Resumo:
Se investiga la manera de implementar en los planes de formación para maestros contenidos de diversa naturaleza. Se pone en práctica un modelo de enseñanza para la geometría de los sólidos llevado a cabo por una profesora de Magisterio de la Universidad de Valencia. Se aplican contenidos teóricos y prácticos. Los contenidos teóricos incluyen conceptos, procesos matemáticos y relaciones que se pueden aplicar en la enseñanza. Los contenidos prácticos incluyen currículos oficiales, estilos y métodos de enseñanza de la geometría de los sólidos, planificación de clases y creencias de los profesores.
Resumo:
Resumen basado en el de la publicación
Resumo:
Resumen basado en el de la publicación