988 resultados para Crenne, Hélisenne de, époque 1538-1541
Resumo:
5-methylcytosine is an important epigenetic modification involved in gene control in vertebrates and many other complex living organisms. Its presence in Drosophila has been a matter of debate and recent bisulfite sequencing studies of early-stage fly embryos have concluded that the genome of Drosophila is essentially unmethylated. However, as we outline here, the Drosophila genome harbors a well-conserved homolog of the TET protein family. The mammalian orthologs TET1/2/3 are known to convert 5-methylcytosine into 5-hydroxymethylcytosine. We discuss several possible explanations for these seemingly contradictory findings. One possibility is that the 2 modified cytosine bases are generated in Drosophila only at certain developmental stages and in a cell type-specific manner during neurogenesis. Alternatively, Drosophila Tet and its mammalian homologs may carry out catalytic activity-independent functions, and the possibility that these proteins may oxidize 5-methylcytosine in RNA created by the methyltransferase Dnmt2 should also be strongly considered.
Resumo:
I consider the possibility that respondents to the Survey of Professional Forecasters round their probability forecasts of the event that real output will decline in the future, as well as their reported output growth probability distributions. I make various plausible assumptions about respondents’ rounding practices, and show how these impinge upon the apparent mismatch between probability forecasts of a decline in output and the probabilities of this event implied by the annual output growth histograms. I find that rounding accounts for about a quarter of the inconsistent pairs of forecasts.
Resumo:
The microbiota of the human gastrointestinal tract plays a key role in nutrition and health. Through the process of fermentation, gut bacteria metabolize various substrates (principally dietary components) to end products such as short-chain fatty acids and gases. This anaerobic metabolism is thought to contribute positively toward host daily energy requirements. However, under certain circumstances, the fermentative process may produce undesirable metabolites. This may cause the onset of gut disorders that can be manifest through both acute and chronic conditions. Moreover, the gut flora may become contaminated by transient pathogens that serve further to upset the normal community structure. There has been a recent increase in the use of dietary components that help to maintain, or even improve, the gut microflora "balance." Probiotics are live microbial feed supplements added to appropriate food vehicles (usually fermented milks), whereas prebiotics are dietary carbohydrates that have a selective metabolism in the colon and serve to increase numbers of bacteria seen as desirable. Because of their purported health-promoting properties, lactic acid-producing bacteria, including bifidobacteria, are the usual target organisms. The market value and biological potential of both approaches are enormous. This article will summarize how efficacious types can be identified.
Resumo:
The recommendation to reduce saturated fatty acid (SFA) consumption to ≤10% of total energy (%TE) is a key public health target aimed at lowering cardiovascular disease (CVD) risk. Replacement of SFA with unsaturated fats may provide greater benefit than replacement with carbohydrates, yet the optimal type of fat is unclear. The aim was to develop a flexible food-exchange model to investigate the effects of substituting SFAs with monounsaturated fatty acids (MUFAs) or n-6 (ω-6) polyunsaturated fatty acids (PUFAs) on CVD risk factors. In this parallel study, UK adults aged 21-60 y with moderate CVD risk (50% greater than the population mean) were identified using a risk assessment tool (n = 195; 56% females). Three 16-wk isoenergetic diets of specific fatty acid (FA) composition (%TE SFA:%TE MUFA:%TE n-6 PUFA) were designed using spreads, oils, dairy products, and snacks as follows: 1) SFA-rich diet (17:11:4; n = 65); 2) MUFA-rich diet (9:19:4; n = 64); and 3) n-6 PUFA-rich diet (9:13:10; n = 66). Each diet provided 36%TE total fat. Dietary targets were broadly met for all intervention groups, reaching 17.6 ± 0.4%TE SFA, 18.5 ± 0.3%TE MUFA, and 10.4 ± 0.3%TE n-6 PUFA in the respective diets, with significant overall diet effects for the changes in SFA, MUFA, and n-6 PUFA between groups (P < 0.001). There were no differences in the changes of total fat, protein, carbohydrate, and alcohol intake or anthropometric measures between groups. Plasma phospholipid FA composition showed changes from baseline in the proportions of total SFA, MUFA, and n-6 PUFA for each diet group, with significant overall diet effects for total SFA and MUFA between groups (P < 0.001). In conclusion, successful implementation of the food-exchange model broadly achieved the dietary target intakes for the exchange of SFA with MUFA or n-6 PUFA with minimal disruption to the overall diet in a free-living population. This trial was registered at clinicaltrials.gov as NCT01478958.
Resumo:
This paper investigates whether survey forecasters are able to make more accurate forecasts than simply supposing that the future values of the variable will move monotonically to the long-run expectation. We consider the forecasts individually, and the consensus forecasts. Consensus survey forecasts are able to do so to varying degrees depending on the variable, but this ability is largely limited to forecasts of the current quarter.
Resumo:
This paper explores the nature and chronology of La Tène and early Roman unenclosed agglomerations in central-eastern France. It has been prompted by the discovery of a c. 115 ha La Tène D2b/Augustan (c. 50 bc to ad 15) site close to Bibracte in the Morvan, located around the source of the River Yonne. This complex provides a new perspective on the chronology and role of Late La Tène and early Roman unenclosed settlements, adding further complexity to the story of the development of Late La Tène oppida. It indicates that these ‘agglomerations’ followed remarkably varied chronological trajectories, raising important issues concerning the nature of landscape and social change at the end of the Iron Age. Dieser Aufsatz untersucht den Charakter und die Datierung von latènezeitlichen und frührömischen offenen Siedlungen im östlichen Zentralfrankreich. Die Anregung dazu erfolgte durch die Entdeckung einer Latène D2b-zeitlichen bis augusteischen (ca. 50 v. Chr. – 15 n. Chr.) Anlage im Morvan bei Bibracte, die ca. 115 ha Fläche bedeckt und sich um die Quellen des Flusses Yonne erstreckt. Es wird vorgeschlagen, dass dieser Siedlungskomplex eine Ergänzung, aber auch einen Kontrast zu den üblichen Interpretationsmodellen von spätlatènezeitlichen und frührömischen, offenen Großsiedlungen und ihrer zeitlichen Entwicklung darstellt, und weiter zur Komplexität der Entwicklung spätlatènezeitlicher Oppida beiträgt. Es deutet sich an, dass einige der ‘Agglomerationen’ anderen Entwicklungslinien folgen, die wichtige Fragen zur Landschaftsgenese und zum sozialen Wandel am Ende der Eisenzeit aufwerfen. Cet article a pour but d'explorer la nature ainsi que la chronologie des agglomérations ouvertes apparaissant à La Tène Final et au début de la période gallo-romaine du Centre-Est de la France. Il fut inspiré et écrit suite à la découverte dans le Morvan d'un site de 115 ha datant de La Tène D2b et de la période Augustéenne (50 av. J.C. à 15 ap. J.C.) s'étirant autour des Sources de l'Yonne. Cette agglomération apporte de nouvelles perspectives sur la chronologie et sur le rôle des habitats ouverts à la fin de l'Âge du Fer ainsi qu'au début de l'époque gallo-romaine apportant des éléments amenés à renforcer le caractère complexe de l'histoire du développement des oppida à La Tène Final. Cette synthèse tend à démontrer que ces agglomérations suivaient des trajectoires chronologiques variées, élevant un certain nombre de questions, et donc des nouvelles problématiques, concernant la nature du paysage et du changement social à la fin de l'Âge du Fer.
Resumo:
BACKGROUND: Integrin-linked kinase (ILK) and its associated complex of proteins are involved in many cellular activation processes, including cell adhesion and integrin signaling. We have previously demonstrated that mice with induced platelet ILK deficiency show reduced platelet activation and aggregation, but only a minor bleeding defect. Here, we explore this apparent disparity between the cellular and hemostatic phenotypes. METHODS: The impact of ILK inhibition on integrin αII b β3 activation and degranulation was assessed with the ILK-specific inhibitor QLT0267, and a conditional ILK-deficient mouse model was used to assess the impact of ILK deficiency on in vivo platelet aggregation and thrombus formation. RESULTS: Inhibition of ILK reduced the rate of both fibrinogen binding and α-granule secretion, but was accompanied by only a moderate reduction in the maximum extent of platelet activation or aggregation in vitro. The reduction in the rate of fibrinogen binding occurred prior to degranulation or translocation of αII b β3 to the platelet surface. The change in the rate of platelet activation in the absence of functional ILK led to a reduction in platelet aggregation in vivo, but did not change the size of thrombi formed following laser injury of the cremaster arteriole wall in ILK-deficient mice. It did, however, result in a marked decrease in the stability of thrombi formed in ILK-deficient mice. CONCLUSION: Taken together, the findings of this study indicate that, although ILK is not essential for platelet activation, it plays a critical role in facilitating rapid platelet activation, which is essential for stable thrombus formation.
Resumo:
Background Whole grain (WG) foods have been suggested to reduce the risk of cardiovascular disease, but studies are inconsistent and effects on cardiovascular risk markers are not clear. Objective The objective of this study was to assess the impact of increasing WG consumption to at least 80 g/d on overall dietary intake, body composition, blood pressure (BP), blood lipids, blood glucose, gastrointestinal microbiology and gastrointestinal symptoms in healthy, middle-age adults with habitual WG intake < 24 g/d. The trial was registered as ISRCTN36521837. Methods Eligible subjects (12 men, 21 women, aged 40-65 y and BMI 20-35 kg/m2) were identified using food frequency questionnaires and subsequently completed 3-day food diaries (3DFD) to confirm habitual WG consumption. Subjects consumed diets high in WG (> 80 g/d) or low in WG (< 16 g/d, refined grain [RG] diet) in a crossover study, with 6-week intervention periods, separated by a 4-week washout. Adherence was achieved by specific dietary advice and provision of a range of cereal food products. The 3DFD, diet compliance diaries and plasma alkylresorcinols (ARs) were used to verify compliance. Results On the WG intervention, consumption increased from 28 g/d to 168 g/d (P < 0.001), accompanied by an increase in plasma ARs (P < 0.001) and total fiber intake (P < 0.001), without any effect on energy or other macronutrients. While there were no effects on studied parameters, there were trends towards increased 24 h fecal weight (P = 0.08) and reduction in body weight (P = 0.10) and BMI (P = 0.08) during the WG compared to the RG period. Conclusion A combination of dietary advice and provision of commercially available food items enabled subjects with a low-moderate habitual consumption of WG to substantially increase their WG intake, but there was little effect on blood biochemical parameters, body composition, BP, fecal measurements or gut microbiology.
Resumo:
BACKGROUND: Monitoring of fruit and vegetable (F&V) intake is fraught with difficulties. Available dietary assessment methods are associated with considerable error, and the use of biomarkers offers an attractive alternative. Few studies to date have examined the use of plasma biomarkers to monitor or predict the F&V intake of volunteers consuming a wide range of intakes from both habitual F&V and manipulated diets. OBJECTIVE: This study tested the hypothesis that an integrated biomarker calculated from a combination of plasma vitamin C, cholesterol-adjusted carotenoid concentration and Ferric Reducing Antioxidant Power (FRAP) had more power to predict F&V intake than each individual biomarker. METHODS: Data from a randomized controlled dietary intervention study [FLAVURS (Flavonoids University of Reading Study); n = 154] in which the test groups observed sequential increases of 2.3, 3.2, and 4.2 portions of F&Vs every 6 wk across an 18-wk period were used in this study. RESULTS: An integrated plasma biomarker was devised that included plasma vitamin C, total cholesterol-adjusted carotenoids, and FRAP values, which better correlated with F&V intake (r = 0.47, P < 0.001) than the individual biomarkers (r = 0.33, P < 0.01; r = 0.37, P < 0.001; and r = 0.14, respectively; P = 0.099). Inclusion of urinary potassium concentration did not significantly improve the correlation. The integrated plasma biomarker predicted F&V intake more accurately than did plasma total cholesterol-adjusted carotenoid concentration, with the difference being significant at visit 2 (P < 0.001) and with a tendency to be significant at visit 1 (P = 0.07). CONCLUSION: Either plasma total cholesterol-adjusted carotenoid concentration or the integrated biomarker could be used to distinguish between high- and moderate-F&V consumers. This trial was registered at www.controlled-trials.com as ISRCTN47748735.
Resumo:
Galactic cosmic ray (GCR) flux is modulated by both particle drift patterns and solar wind structures on a range of timescales. Over solar cycles, GCR flux varies as a function of the total open solar magnetic flux and the latitudinal extent of the heliospheric current sheet. Over hours, drops of a few percent in near-Earth GCR flux (Forbush decreases, FDs) are well known to be associated with the near-Earth passage of solar wind structures resulting from corotating interaction regions (CIRs) and transient coronal mass ejections (CMEs). We report on four FDs seen at ground-based neutron monitors which cannot be immediately associated with significant structures in the local solar wind. Similarly, there are significant near-Earth structures which do not produce any corresponding GCR variation. Three of the FDs are during the STEREO era, enabling in situ and remote observations from three well-separated heliospheric locations. Extremely large CMEs passed the STEREO-A spacecraft, which was behind the West limb of the Sun, approximately 2–3 days before each near- Earth FD. Solar wind simulations suggest that the CMEs combined with pre-existing CIRs, enhancing the pre-existing barriers to GCR propagation. Thus these observations provide strong evidence for the modulation of GCR flux by remote solar wind structures.
Resumo:
Platelet aggregation and phosphorylation of phospholipase Cγ2 induced by collagen were attenuated in ADAP(-/-) platelets. However, aggregation and signaling induced by collagen-related peptide (CRP), a GPVI-selective agonist, were largely unaffected. Platelet adhesion to CRP was also unaffected by ADAP deficiency. Adhesion to the α(2) β(1) -selective ligand GFOGER and to a peptide (III-04), which supports adhesion that is dependent on both GPVI and α(2) β(1), was reduced in ADAP(-/-) platelets. An impedance-based label-free detection technique, which measures adhesion and spreading of platelets, indicated that, in the absence of ADAP, spreading on GFOGER was also reduced. This was confirmed with non-fluorescent differential-interference contrast microscopy, which revealed reduced filpodia formation in ADAP(-/-) platelets adherent to GFOGER. This indicates that ADAP plays a role in mediating platelet activation via the collagen-binding integrin α(2) β(1). In addition, we found that ADAP(-/-) mice, which are mildly thrombocytopenic, have enlarged spleens as compared with wild-type animals. This may reflect increased removal of platelets from the circulation.
Resumo:
The C-type lectin receptor CLEC-2 is expressed primarily on the surface of platelets, where it is present as a dimer, and is found at low level on a subpopulation of other hematopoietic cells, including mouse neutrophils [1–4] Clustering of CLEC-2 by the snake venom toxin rhodocytin, specific antibodies or its endogenous ligand, podoplanin, elicits powerful activation of platelets through a pathway that is similar to that used by the collagen receptor glycoprotein VI (GPVI) [4–6]. The cytosolic tail of CLEC-2 contains a conserved YxxL sequence preceded by three upstream acidic amino acid residues, which together form a novel motif known as a hemITAM. Ligand engagement induces tyrosine phosphorylation of the hemITAM sequence providing docking sites for the tandem-SH2 domains of the tyrosine kinase Syk across a CLEC-2 receptor dimer [3]. Tyrosine phosphorylation of Syk by Src family kinases and through autophosphorylation leads to stimulation of a downstream signaling cascade that culminates in activation of phospholipase C γ2 (PLCγ2) [4,6]. Recently, CLEC-2 has been proposed to play a major role in supporting activation of platelets at arteriolar rates of flow [1]. Injection of a CLEC-2 antibody into mice causes a sustained depletion of the C-type lectin receptor from the platelet surface [1]. The CLEC-2-depleted platelets were unresponsive to rhodocytin but underwent normal aggregation and secretion responses after stimulation of other platelet receptors, including GPVI [1]. In contrast, there was a marked decrease in aggregate formation relative to controls when CLEC-2-depleted blood was flowed at arteriolar rates of shear over collagen (1000 s−1 and 1700 s−1) [1]. Furthermore, antibody treatment significantly increased tail bleeding times and mice were unable to occlude their vessels after ferric chloride injury [1]. These data provide evidence for a critical role for CLEC-2 in supporting platelet aggregation at arteriolar rates of flow. The underlying mechanism is unclear as platelets do not express podoplanin, the only known endogenous ligand of CLEC-2. In the present study, we have investigated the role of CLEC-2 in platelet aggregation and thrombus formation using platelets from a novel mutant mouse model that lacks functional CLEC-2.
Resumo:
The inhibitory effect of R406 provides direct evidence of a role for Syk in GPVI, CLEC-2 and integrin alphaIIbbeta3 signaling in human platelets. Further, the results demonstrate a critical role for Syk in mediating tyrosine phosphorylation of CLEC-2, suggesting a novel model in which both Src and Syk kinases regulate tyrosine phosphorylation of the C-type lectin receptor leading to platelet activation.
Resumo:
The present study demonstrates that the alphaIIb-CHAMPS peptide induces platelet activation through integrin alphaIIbbeta3-dependent and independent pathways with the former mediating tyrosine phosphorylation of FcR gamma-chain and Syk. The use of the alphaIIb-CHAMPS peptide to study integrin alphaIIbbeta3 function is compromised by non-integrin-mediated effects.
Resumo:
The results demonstrate that Gads plays a key role in linking the adapter LAT to SLP-76 in response to weak activation of GPVI and CLEC-2 whereas LAT is required for full activation over a wider range of agonist concentrations. These results reveal the presence of a Gads-independent pathway of platelet activation downstream of LAT.