Near-earth cosmic ray decreases associated with remote coronal mass ejections


Autoria(s): Thomas, S. R.; Owens, Matt J.; Lockwood, Mike; Barnard, Luke; Scott, Chris J.
Data(s)

2015

Resumo

Galactic cosmic ray (GCR) flux is modulated by both particle drift patterns and solar wind structures on a range of timescales. Over solar cycles, GCR flux varies as a function of the total open solar magnetic flux and the latitudinal extent of the heliospheric current sheet. Over hours, drops of a few percent in near-Earth GCR flux (Forbush decreases, FDs) are well known to be associated with the near-Earth passage of solar wind structures resulting from corotating interaction regions (CIRs) and transient coronal mass ejections (CMEs). We report on four FDs seen at ground-based neutron monitors which cannot be immediately associated with significant structures in the local solar wind. Similarly, there are significant near-Earth structures which do not produce any corresponding GCR variation. Three of the FDs are during the STEREO era, enabling in situ and remote observations from three well-separated heliospheric locations. Extremely large CMEs passed the STEREO-A spacecraft, which was behind the West limb of the Sun, approximately 2–3 days before each near- Earth FD. Solar wind simulations suggest that the CMEs combined with pre-existing CIRs, enhancing the pre-existing barriers to GCR propagation. Thus these observations provide strong evidence for the modulation of GCR flux by remote solar wind structures.

Formato

text

Identificador

http://centaur.reading.ac.uk/39387/1/315_Thomas_apj_801_1_5.pdf

Thomas, S. R., Owens, M. J. <http://centaur.reading.ac.uk/view/creators/90003236.html>, Lockwood, M. <http://centaur.reading.ac.uk/view/creators/90001127.html>, Barnard, L. <http://centaur.reading.ac.uk/view/creators/90005020.html> and Scott, C. J. <http://centaur.reading.ac.uk/view/creators/90003900.html> (2015) Near-earth cosmic ray decreases associated with remote coronal mass ejections. The Astrophysical Journal, 801 (1). 5. ISSN 1538-4357 doi: 10.1088/0004-637X/801/1/5 <http://dx.doi.org/10.1088/0004-637X/801/1/5>

Idioma(s)

en

Publicador

American Astronomical Society

Relação

http://centaur.reading.ac.uk/39387/

creatorInternal Owens, Matt J.

creatorInternal Lockwood, Mike

creatorInternal Barnard, Luke

creatorInternal Scott, Chris J.

http://dx.doi.org/10.1088/0004-637X/801/1/5

10.1088/0004-637X/801/1/5

Tipo

Article

PeerReviewed