858 resultados para COMPETITIVE RECRUITMENT
Resumo:
Over the past 30 years, numerous attempts to understand the relationship between offspring size and fitness have been made, and it has become clear that this critical relationship is strongly affected by environmental heterogeneity. For marine invertebrates, there has been a long-standing interest in the evolution of offspring size, but there have been very few empirical and theoretical examinations of post-metamorphic offspring size effects, and almost none have considered the effect of environmental heterogeneity on the offspring size/fitness relationship. We investigated the post-metamorphic effects of offspring size in the field for the colonial marine invertebrate Botrylloides violaceus. We also examined how the relationship between offspring size and performance was affected by three different types of intraspecific competition. We found strong and persistent effects of offspring size on survival and growth, but these effects depended on the level and type of intraspecific competition.. Generally, competition strengthened the advantages of increasing maternal investment. Interestingly, we found that offspring size determined the outcome of competitive interaction: juveniles that had more maternal investment were more likely to encroach on another juvenile's territory. This suggests that mothers have the previously unrecognized potential to influence the outcome of competitive interactions in benthic marine invertebrates. We created a simple optimality model, which utilized the data generated from our field experiments, and found that increasing intraspecific competition resulted in an increase,in predicted optimal size. Our results suggest that the relationship between offspring size and fitness is highly variable in the marine environment and strongly dependent on the density of conspecifics.
Resumo:
We report that phosphoinositol-binding sorting nexin 5 ( SNX5) associates with newly formed macropinosomes induced by EGF stimulation. We used the recruitment of GFP-SNX5 to macropinosomes to track their maturation. Initially, GFP-SNX5 is sequestered to discrete subdomains of the macropinosome; these subdomains are subsequently incorporated into highly dynamic, often branched, tubular structures. Time-lapse videomicroscopy revealed the highly dynamic extension of SNX5-labelled tubules and their departure from the macropinosome body to follow predefined paths towards the perinuclear region of the cell, before fusing with early endosomal acceptor membranes. The extension and departure of these tubular structures occurs rapidly over 5-10 minutes and is dependent upon intact microtubules. As the tubular structures depart from the macropinosome there is a reduction in the surface area and an increase in tension of the limiting membrane of the macropinosome. In addition to the recruitment of SNX5 to the macropinosome, Rab5, SNX1 and EEA1 are also recruited by newly formed macropinosomes, followed by the accumulation of Rab7. SNX5 forms heterodimers with SNX1 and this interaction is required for endosome association of SNX5. We propose that the departure of SNX5-positive tubules represents a rapid mechanism of recycling components from macropinosomes thereby promoting their maturation into Rab7-positive structures. Collectively these findings provide a detailed real-time characterisation of the maturation process of the macropinocytic endosome.
Resumo:
The control and coordination of multiple mobile robots is a challenging task; particularly in environments with multiple, rapidly moving obstacles and agents. This paper describes a robust approach to multi-robot control, where robustness is gained from competency at every layer of robot control. The layers are: (i) a central coordination system (MAPS), (ii) an action system (AES), (iii) a navigation module, and (iv) a low level dynamic motion control system. The multi-robot coordination system assigns each robot a role and a sub-goal. Each robot’s action execution system then assumes the assigned role and attempts to achieve the specified sub-goal. The robot’s navigation system directs the robot to specific goal locations while ensuring that the robot avoids any obstacles. The motion system maps the heading and speed information from the navigation system to force-constrained motion. This multi-robot system has been extensively tested and applied in the robot soccer domain using both centralized and distributed coordination.
Competitive Advantage Through Service-Orientation: Strategic Directions for the Hospitality Industry
Resumo:
TITLE: The Rural Medicine Rotation: Increasing Rural Recruitment through Quality Undergraduate Rural Experiences Eley Diann, University of Queensland, School of Medicine, Rural Clinical Division, Toowoomba 4350, Queensland Australia Baker Peter, University of Queensland, School of Medicine Rural, Clinical Division, Toowoomba 4350, Queensland Australia Chater Bruce, University of Queensland, Chair, Clinical School Management Committee, School of Medicine Rural Clinical Division, Queensland Australia CONTEXT: While rural background and rural exposure during medical training increases the likelihood of rural recruitment (Wilkinson, 2003), the quality and content of that exposure is the key to altering undergraduatesâ?? perceptions of rural practice. The Rural Clinical Division at University of Queensland (UQ) runs the Rural Medicine Rotation (RMR) within the School of Medicine. The RMR is one of five eight week clinical rotations in Year three and is compulsory for all students. The RMR provides the opportunity to learn from a wide range of health professionals and clinical exposure is not restricted to general practice but also includes remote area nursing, Indigenous health care, allied health professionals and medical specialists. Week 1 involves preparation for their rural placement with workshops and seminars and Week 8 consolidates their placement and includes case and project presentations and a summative assessment. Weeks 2-7 are spent living and working as part of the health team in different rural communities. SETTING: Rural communities in and around Queensland including locations such as Arnham Land, Thursday Island, Mt. Isa and Alice Springs METHOD: All aspects of the RMR are evaluated with surveys using both qualitative and quantitative free response questions, completed by all students at the end of the Week 8. RESULTS: Overall the RMR is evaluated highly and narratives offered by students show that the RMR provides a positive rural experience. The overall impact of the RMR for students in 2004 ranked 3.45 on a scale of 1 to 4 (1 = lowest and 4 = highest), and is exemplified by the following quote; â??I enjoyed my placement so much I am now considering rural medicine something I definitely had not considered beforeâ??. OUTCOME: The positive impact of the RMR on studentâ??s perceptions of rural medicine is encouraging and can help achieve the overall aim of increasing recruitment of the rural workforce in Australia.