943 resultados para Balneario de Caldas de Reyes (Pontevedra).
Resumo:
En la enseñanza y aprendizaje de las matemáticas los estudiantes deben interactuar entre sí y con el profesor. Los profesores que vinculemos en el aula de clase estrategias de trabajo colaborativo, debemos ser consientes de que no todos los grupos de trabajo; son grupos de trabajo colaborativo, por tanto debemos estar atentos a los interés, expectativas y motivaciones de los estudiantes, permitiendo que la clase de matemáticas sea una clase colaborativa, donde todos los participantes construyan el conocimiento, adquieren responsabilidades y compromisos; una clase que genere confianza, seguridad y respeto, para que todos los estudiantes se desenvuelvan en un ambiente favorable que les permita crear estrategias para abordar una situación problema, argumentar, justificar y validar sus inferencias, todo esto a través de la resolución de problemas.
Resumo:
En esta comunicación se presenta un resumen del trabajo de grado desarrollado por un grupo de profesores, del cual hizo parte el autor (1999), adscritos al programa de Especialización en Educación Matemática desarrollado por la Universidad Distrital Francisco José de Caldas, en convenio con la Universidad de Sucre (Sincelejo).
Resumo:
Debo empezar por hacer referencia a los amigos y colegas de trabajo, en particular al grupo de investigación Matemáticas Escolares de la Universidad Distrital Francisco José de Caldas (Matescud) pues del intercambio con ellos aparecen todas las ideas que expondré. La Asociación Colombiana de Matemática Educativa ha decidido abordar en este encuentro un aspecto crucial para la mejor comprensión de las peticiones y obligaciones que se formulan en los Lineamientos Curriculares para Matemáticas (MEN, 1998). Entre las peticiones y obligaciones aludidas se encuentra, por ejemplo:1. La adopción de una perspectiva didáctica centrada en la teoría de la transposición didáctica 2. La adopción de una perspectiva cultural de la educación matemática 3. La adopción como uno de los propósitos de formación para los estudiantes el de su desarrollo de pensamiento matemático y de manera particular el desarrollo de su pensamiento espacial, métrico, variacional, aleatorio y numérico 4. Como consecuencia de la anterior adopción aparece el trabajo por resolución de problemas ya que de acuerdo con Dubinsky
Resumo:
El presente documento tiene como finalidad el mostrar el proceso enseñanza- aprendizaje dado en el colegio I. T. I. Francisco José de Caldas en una práctica docente, abordando tres campos de pensamiento matemático: numérico, métrico y geométrico a partir de una situación fundamental explicitada en algunos juegos. Esta metodología se usa con el fin de hacer que los estudiantes obtengan un aprendizaje significativo de las temáticas propuestas, por medio de un proceso lúdico y dinámico; su objetivo es reflexionar acerca de los propósitos que tiene el maestro frente al proceso que enfrentan los estudiantes, sin pensar solamente en abordar muchos conocimientos para lograr todo lo propuesto por el currículo, sino que, independientemente de esto, se buscó que todo lo que se dio a conocer quedara completamente claro.
Resumo:
El informe que se presenta es el resultado de nuestro trabajo de investigación para optar el título de Licenciadas en educación básica con énfasis en matemáticas. Se diseñó e implementó una secuencia de actividades sobre la enseñanza de la noción de Probabilidad marginal y conjunta a 72 estudiantes de Grado Undécimo del Instituto Técnico Industrial Francisco José de Caldas, teniendo como referente la resolución de problemas y la teoría de las situaciones didácticas propuestas por Brousseau.
Resumo:
El propósito de la investigación fue determinar la diferencia en el aprendizaje significativo del concepto de derivada y reglas de derivación, en dos grupos de estudiantes de cálculo diferencial de la Universidad del Quindío, en uno utilizando la estrategia didáctica de enseñanza orientada desde conceptos previos, recorrido histórico, fases real, simbólica y conceptual y la resolución de problemas, y en el otro la estrategia didáctica tradicional, el tipo de investigación fue comparativa y correlacional. El diseño metodológico es cuasiexperimental. Se aplicó la prueba t-student para definir los resultados entre los grupos. Se llegó a la conclusión de que la estrategia didáctica propuesta en la investigación permitió que los estudiantes del grupo experimental comprendieran con mayor claridad las temáticas tratadas.
Resumo:
Este estudio de caso hace parte de una investigación que se está realizando con estudiantes sordos de grados octavo y décimo, con el propósito de lograr la comprensión/construcción del concepto de función, desde las dimensiones epistemológicas, didáctica y cognitiva. El estudio se fundamenta en el marco teórico de los registros de representación semiótica y la metodología de la Ingeniería didáctica, apoyado en el diseño, desarrollo e implementación de un software.
Resumo:
En el proceso del enseñanza y aprendizaje de las matemáticas entre el docente y el estudiante, existe una relación básica e importante, es el lenguaje, por ello ya existen diversas técnicas de cómo hablarles a los educandos, pero ¿qué pasa cuando los estudiantes son sordos?, con la nueva ley de inclusión no existe ni la posibilidad de no aceptarlos o rehusar el cargo, entonces surge el reto de cómo enfrentar lo mejor posible dicho proceso. Esta comunicación trata de mostrar la experiencia de como un profesor sin ser capacitado para tal situación, buscando alternativas para sus clases con población sorda, en grados Decimo y Undécimo de la I.E. Camacho Carreño, de la ciudad de Bucaramanga.
Resumo:
Esta propuesta metodológica, nace como producto de la tesis de maestría de uno de los ponentes, en ella se intenta mostrar una forma de enseñar las secciones cónicas en un ambiente didáctico que se basa en que el estudiante aprenda haciendo. Por ello, se presentan actividades para que el estudiante explore y descubra características de las figuras que él construirá y, en diálogo con sus compañeros y el docente, construya su propio conocimiento. Para lograr este proceso se empleó como referente teórico el modelo de Van-Hiele el cual se caracteriza al tener dos secciones, una de las cuales es descriptiva, en ella se observan niveles de razonamiento. La otra parte nos da a los maestros las pautas para que nuestros estudiantes avancen de un nivel a otro, estas pautas se conocen como fases de aprendizaje.
Resumo:
Con base en un análisis de los lineamientos curriculares, los estándares básicos de competencia y algunos estudios e investigaciones sobre la variación asociada al estudio de la trigonometría plana, decidimos aplicar la técnica del análisis de contenido a algunos libros de texto del grado décimo frente al tipo de ejercicios y “problemas” que se proponen para abordar el estudio de las relaciones trigonométricas; este análisis muestra que generalmente esta temática se desarrolla a través de expresiones algebraicas para calcular datos fijos y desconocidos de un triángulo. Estos resultados muestran la necesidad de diseñar propuestas alternativas en las cuales se haga hincapié en la visualización de relaciones “dinámicas” y funcionales entre los ángulos y los lados de un triángulo.
Resumo:
El presente texto muestra una investigación que trabaja la enseñanza-aprendizaje de aspectos asociados al límite como aproximación optima, desde un análisis teórico (apoyado en APOE) que parte de una descomposición genética del objeto límite y brinda los primeros indicios de las construcciones mentales que poseen los estudiantes, luego se complementa con un parte de diseño e implementación de actividades en el aula con el ciclo de enseñanza ACE. Como la base es una investigación sobre la propia práctica del docente, se trata de un primer avance en este campo, lo que implica un estudio abierto a cualquier persona que requiera ampliarlo y/o complementarlo.
Resumo:
En éste trabajo se reportan resultados de la investigación que referencia el título. El proyecto se desarrolló en estudiantes de noveno grado, de educación básica, a través de situaciones problema del contexto sociocultural y de las ciencias, bajo un diseño cualitativo y en las tres fases ; diseño y aplicación de una prueba diagnóstica, para reconocimiento de posibles dificultades de los estudiantes, intervención en el aula, para superación de las dificultades detectadas, y una prueba de contraste, para valorar el logro de las estrategias aplicadas y obtener información para mejoramiento del aprendizaje de los estudiantes. Los resultados muestran avances significativos de los estudiantes en cuanto a la comprensión de los conceptos, procedimientos y aplicaciones del pensamiento métrico.
Resumo:
Este artículo presenta algunos resultados de investigación, que se viene desarrollando bajo el método de estudio de caso en una institución rural de la Región de Urabá, con el propósito de analizar un proceso de modelación matemática. Esto fue posible, al permitirles a los estudiantes generar modelos lineales desde una situación en el contexto del cultivo plátano. Y al final, se presentan algunos resultados, resaltando el papel del contexto cotidiano incluido en la enseñanza de las Matemáticas, para mediar el uso de las letras como variables, en correspondencia entre el contexto cotidiano y las matemáticas.
Resumo:
Exponemos en este documento algunos resultados de una investigación cualitativa que tiene como objetivo diseñar experiencias que posibiliten el desarrollo de habilidades comunicativas (NCTM, 2000) en estudiantes de once grado, y analizar como dichas habilidades contribuyen en el progreso de su pensamiento algebraico. Este estudio surge para atender una problemática identificada en estudiantes de nuevo ingreso a la universidad, quienes en una prueba inicial dejan ver que sus respuestas incorrectas refieren más a su baja interpretación de enunciados que a la incorrecta aplicación de algoritmos. Para la consecución de dicho objetivo se diseña e implementa un plan de intervención con algunos casos de estudio, quienes en las primeras etapas de implementación del plan diseñado recaen en las mismas dificultades.
Resumo:
Presentamos un avance del proyecto de tesis de doctorado que estamos realizando en el marco del doctorado en educación, línea de educación matemática, de la Universidad de Antioquia. Este estudio tiene como propósito analizar la objetivación del concepto de límite de una función, de alumnas de grado once, a través del desarrollo de su pensamiento teórico. La perspectiva histórico-cultural de la educación sirve de fundamentación teórica en esta investigación, en especial la teoría de la actividad. El camino metodológico a seguir es de orden cualitativo, desde un paradigma crítico-dialéctico, y una investigación participante. El trabajo de campo se realizará en una institución escolar pública de Medellín.