844 resultados para supramolecular synthon
Resumo:
This thesis was driven by the ambition to create suitable model systems that mimic complex processes in nature, like intramolecular transitions, such as unfolding and refolding of proteins, or intermolecular interactions between different cell compo-nents. Novel biophysical approaches were adopted by employing atomic force mi-croscopy (AFM) as the main measurement technique due to its broad diversity. Thus, high-resolution imaging, adhesion measurements, and single-molecule force distance experiments were performed on the verge of the instrumental capabilities. As first objective, the interaction between plasma membrane and cytoskeleton, me-diated by the linker protein ezrin, was pursued. Therefore, the adsorption process and the lateral organization of ezrin on PIP2 containing solid-supported membranes were characterized and quantified as a fundament for the establishment of a biomimetic model system. As second component of the model system, actin filaments were coated on functionalized colloidal probes attached on cantilevers, serving as sensor elements. The zealous endeavor of creating this complex biomimetic system was rewarded by successful investigation of the activation process of ezrin. As a result, it can be stated that ezrin is activated by solely binding to PIP2 without any further stimulating agents. Additional cofactors may stabilize and prolong the active conformation but are not essentially required for triggering ezrin’s transformation into an active conformation. In the second project, single-molecule force distance experiments were performed on bis-loop tetra-urea calix[4]arene-catenanes with different loading rates (increase in force per second). These macromolecules were specifically designed to investigate the rupture and rejoining mechanism of hydrogen bonds under external load. The entangled loops of capsule-like molecules locked the unbound state of intramolecular hydrogen bonds mechanically, rendering a rebinding observable on the experimental time scale. In conjunction with Molecular Dynamics simulations, a three-well potential of the bond rupture process was established and all kinetically relevant parameters of the experiments were determined by means of Monte Carlo simulations and stochastic modeling. In summary, it can be stated that atomic force microscopy is an invaluable tool to scrutinize relevant processes in nature, such as investigating activation mechanisms in proteins, as shown by analysis of the interaction between F-actin and ezrin, as well as exploring fundamental properties of single hydrogen bonds that are of paramount interest for the complete understanding of complex supramolecular structures.
Resumo:
Discotic hexa-peri-hexabenzocoronene (HBC) derivatives have attracted intensive scientific interest due to their unique optoelectronic properties, which depends, to a large extend, upon the attached functional groups. The presented work covers the synthesis of novel HBC building blocks and new HBC derivatives as functional materials. The traditional preparation of HBC derivatives requires elaborate synthetic techniques and tremendous effort. Especially, more than 10 synthetic steps are usually necessary to approach HBCs with lower symmetries. In order to simplify the synthetic work and reduce the high costs, a novel synthetic strategy involving only four steps was developed based on 2,3,5,6-tetraphenyl-1,4-diiodobenzene intermediates and palladium catalyzed Suzuki cross coupling reactions. In order to introduce various functionalities and expand the diversity of multi-functionalizations, a novel C2v-symmetric dihalo HBC building block 2-47, which contains one iodine and one bromine in para positions, was prepared following the traditional intermolecular [4+2] Diels-Alder reaction route. The outstanding chemical selectivity between iodo and bromo groups in this compound consequently leads to lots of HBC derivatives bearing different functionalities. Directly attached heteroatoms will improve the material properties. According to the application of intramolecular Scholl reaction to a para-dimethoxy HPB, which leads to a meta-dimethoxy HBC, a phenomenon of phenyl group migration was discovered. Thereby, several interesting mechanistic details involving arenium cation intermediates were discussed. With a series of dipole functionalized HBCs, the molecular dynamics of this kind of materials was studied in different phases by DSC, 2D WAXD, solid state NMR and dielectric spectroscopies. High charge carrier mobility is an important parameter for a semiconductive material and depends on the degree of intramolecular order of the discotic molecules in thin films for HBC derivatives. Dipole – dipole interaction and hydrogen bonds were respectively introduced in order to achieve highly ordered supramolecular structure. The self-assembly behavior of these materials were investigated both in solution and solid state. Depending upon the different functionalities, these novel materials show either gelating or non-linear optical properties, which consequently broaden their applications as functional materials. In the field of conceivable electronic devices at a molecular level, HBCs hold high promise. Differently functionalized HBCs have been used as active component in the studies of single-molecular CFET and metal-SAMs-metal junctions. The outstanding properties shown in these materials promise their exciting potential applications in molecular devices.
Resumo:
This thesis presents the versatile synthesis and self-organization of C3-symmetric discotic nanographene molecules as well as their potential applications as materials in molecular electronics. The details can be described as follows: 1) A novel synthetic strategy towards properly designed C3 symmetric 1,3,5-tris-2’arylbenzene precursors has been developed. After the final planarization by treatment with FeCl3 under mild conditions, for the first time, it became possible to access a variety of new C3-symmetric hexa-peri-hexabenzocoronenes (HBCs) and a series of triangle-shaped nanographenes. D3 symmetric HBC with three alkyl substituents and C2 symmetric HBC with two alkyl substituents were synthesized and found to show the surprising decrease of isotropic points., the self-assembly at the liquid-solid interface displayed a unique zigzag and flower patterns. 2) Triangle-shaped discotics revealed a unique self-assembly behavior in solution, solid state as well as at the solution-substrate interface. A mesophase stability over the broad temperature range with helical supramoelcular arrangement were observed in the bulk state. The honeycomb pattern as the result of novel self-assembly was presented. Triangle-shaped discotics with swallow alkyl tails were fabricated into photovoltaic devices, the supramolecular arrangement upon thermal treatment was found to play a key role in the improvement of solar efficiency. 3) A novel class of C3 symmetric HBCs with alternating polar/apolar substituents was synthesized. Their peculiar self-assembly in solution, in the bulk and on the surface were investigated by NMR techniques, X-ray diffraction as well as different electron microscope techniques. 4) A novel concept for manipulating the intracolumnar stacking of discotics and thus for controlling the helical pitch was presented. A unique staggered stacking in the column was achieved for the first time. Theoretical simulations confirmed this self-organization and predicted that this packing should show the highest charge carrier mobility for all discotics.
Resumo:
The synthesis and characterization of various heteroatom containing PAHs with positive charge were investigated in this work: 1. A series of 2-phenyl-benzo[8,9]quinolizino[4,5,6,7-fed]phenanthridinylium (PQP) salts with different alkyl chains and anions were synthesized. The synthesis of the extended derivates of PQP salts with two fused benzene rings, 2-phenyl-naphthacene[1,2]quinolizino[3,4,5,6-def]benzo[i]phenanthridinium (DBPQP) tetrafluoroborate was also developed. The self-assembly behavior of these amphiphilic PAHs was investigated in methanolic solution as well as in the bulk. Various aggregates with different morphologies such as fibers, tubes and vesicals were obtained from their solution. All of these morphology changes could be ascribed to the changes in intermolecular interactions which resulting from the difference in the molecular structures such as aromatic cores, alkyl chains and counterions. 2. The synthetic strategy of oxygen containing positively charged PAHs, benzo[5,6]naphthaceno[1,12,11,10-jklmna]xanthylium (BNAX) salts and its dibenzo derivates, DBNAX salts were developed. With a similar method, sulfur containing benzo[5,6]naphthaceno[1,12,11,10-jklmna]thioxanthylium (BNATX) salts were also synthesized. Various BNAX salts with different alkyl chains could be obtained and their supramolecular behavior were investigated. A discotic liquid crystalline behavior was observed for di- (3-25) and tridodecyl (3-27) substituted BNAX salts and both compounds exhibited large unit cell in their 2D-WAXS patterns which could be attributed to the formation of dimer structures. By drop casting their methanolic solution on silicon wafers, similar nanoscaled fibers from monododecyl substituted BNAX bromide 3-24 and DBNAX bromide 3-35 could be observed. 3. A novel synthetic method toward nitrogen containing 14-phenyl-dibenzo[jk,mn]naphtho[2,1,8-fgh]thebenidinium (DBNT) salts was also developed. In this method, the undehydrogenated precursor of DBNT, dibenzoacridinium salt could be produced directly from the reaction between dibenzoxanthenylium derivates and amine/aniline in reasonable yields. Various DBNT salts with different alkyl and alkylphenyl chains on their nitrogen atom were synthesized in this two-step method. The self-assembly behavior of two alkylated DBNT salts, 4-15a and 4-18b was also studied in this work. Compound 4-15a formed nanoscaled fibers and helical aggregates were obtained from 4-18b in their methanolic solutions. 4. Various ionic complexes were derived by complexing PQP and DBPQP cations with different sulfate/sulfonate group containing anionic surfactants. The ionic complexes resulting from the ionic self-assembly (ISA) method exhibited self-assembly behavior which was controllable by the species and shape of cations and anions. Various aggregates such as nanofibers and spherical aggregates could be produced from their methanolic solution in a defined manner conveniently.
Resumo:
Eine zielgerichtete Steuerung und Durchführung von organischen Festkörperreaktionen wird unter anderem durch genaue Kenntnis von Packungseffekten ermöglicht. Im Rahmen dieser Arbeit konnte durch den kombinierten Einsatz von Einkristallröntgenanalyse und hochauf-lösender Festkörper-NMR an ausgewählten Beispielen ein tieferes Verständnis und Einblicke in die Reaktionsmechanismen von organischen Festkörperreaktionen auf molekularer Ebene gewonnen werden. So konnten bei der topotaktischen [2+2] Photodimerisierung von Zimt-säure Intermediate isoliert und strukturell charakterisiert werden. Insbesondere anhand statischer Deuteronen- und 13C-CPMAS NMR Spektren konnten eindeutig dynamische Wasserstoffbrücken nachgewiesen werden, die transient die Zentrosymmetrie des Reaktions-produkts aufheben. Ein weiterer Nachweis gelang daraufhin mittels Hochtemperatur-Röntgen-untersuchung, sodass der scheinbare Widerspruch von NMR- und Röntgenuntersuchungen gelöst werden konnte. Eine Veresterung der Zimtsäure entfernt diese Wasserstoffbrücken und erhält somit die Zentrosymmetrie des Photodimers. Weiterhin werden Ansätze zur Strukturkontrolle in Festkörpern basierend auf der molekularen Erkennung des Hydroxyl-Pyridin (OH-N) Heterosynthon in Co-Kristallen beschrieben, wobei vor allem die Stabilität des Synthons in Gegenwart funktioneller Gruppen mit Möglichkeit zu kompetetiver Wasserstoffbrückenbildung festgestellt wurde. Durch Erweiterung dieses Ansatzes wurde die molekulare Spezifität des Hydroxyl-Pyridin (OH-N) Heterosynthons bei gleichzeitiger Co-Kristallisation mit mehreren Komponenten erfolgreich aufgezeigt. Am Beispiel der Co-Kristallisation von trans--1,2-bis(4-pyridyl)ethylen (bpe) mit Resorcinol (res) in Gegenwart von trans-1,2-bis(4-pyridyl)ethan (bpet) konnten Zwischenprodukte der Fest-körperreaktionen und neuartige Polymorphe isoliert werden, wobei eine lückenlose Aufklärung des Reaktionswegs mittels Röntgenanalyse gelang. Dabei zeigte sich, dass das Templat Resorcinol aus den Zielverbindungen entfernbar ist. Ferner gelang die Durchführung einer seltenen, nicht-idealen Einkristall-Einkristall-Umlagerung von trans--1,2-bis(4-pyridyl)ethylen (bpe) mit Resorcinol (res). In allen Fällen konnten die Fragen zur Struktur und Dynamik der untersuchten Verbindungen nur durch gemeinsame Nutzung von Röntgenanalyse und NMR-Spektroskopie bei vergleichbaren Temperaturen eindeutig und umfassend geklärt werden.
Resumo:
This thesis deals with the synthesis and the conformation analysis of hybrid foldamers containing the 4-carboxyoxazolidin-2-one unit or related molecules, in which an imido-type function is obtained by coupling the nitrogen of the heterocycle with the carboxylic acid moiety of the next unit. The imide group is characterized by a nitrogen atom connected to an endocyclic and an exocyclic carbonyl, which tend always to adopt the trans conformation. As a consequence of this locally constrained disposition effect, these imide-type oligomers are forced to fold in ordered conformations. The synthetic approach is highly tuneable with endless variations, so, simply by changing the design and the synthesis, a wide variety of foldamers with the required properties may be prepared “on demand”. Thus a wide variety of unusual secondary structures and interesting supramolecular materials may be obtained with hybrid foldamers. The behaviour in the solid state of some of these compounds has been analyzed in detail, thus showing the formation of different kinds of supramolecular materials that may be used for several applications. A winning example is the production of a bolaamphiphilic gelators that may also be doped with small amounts of dansyl containing compounds, needed to show the cellular uptake into IGROV-1 cells, by confocal laser scanning microscopy. These gels are readily internalized by cells and are biologically inactive, making them very good candidates in the promising field of drug delivery. In the last part of the thesis, a particular attention was directed to the search of new scaffolds that behave as constrained amino acid mimetics, showing that tetramic acids derivatives could be good candidates for the synthesis and applications of molecules having an ordered secondary structure.
Resumo:
Molecular imaging technologies as Positron Emission Tomography (PET) are playing a key role in drug discovery, development and delivery due to the possibility to quantify e.g. the binding potential in vivo, non-invasively and repetitively. In this context, it provides a significant advance in the understanding of many CNS disorders and conditions. The serotonergic receptor system is involved in a number of important physiological processes and diseases such as depression, schizophrenia, Alzheimer’s disease, sleep or sexual behaviour. Especially, the 5-HT2A and the 5-HT1A receptor subtypes are in the focus of fundamental and clinical research due to the fact that many psychotic drugs interact with these neuronal transmembrane receptors. This work describes the successful development, as well as in vitro and in vivo evaluation of 5-HT2A and 5-HT1A selective antagonistic PET-radiotracers. The major achievements obtained in this thesis are: 1. the development and in vitro evaluation of several 5-HT2A antagonistic compounds, namely MH.MZ (Ki = 9.0 nM), (R)-MH.MZ (Ki = 0.72 nM) and MA-1 (Ki = 3.0 nM). 2. the 18F-labeling procedure of these compounds and their optimization, whereby radiochemical yields > 35 % in high specific activities (> 15 GBq/µmol) could be observed. Synthesis time inclusive secondary synthon synthesis, the radioactive labeling procedure, separation and final formulation took no longer than 120 min and provided the tracer in high radiochemical purity. 3. the in vivo µPET evaluation of [18F]MH.MZ and (R)-[18F]MH.MZ resulting in promising imaging agents of the 5-HT2A receptor status; from which (R)-[18F]MH.MZ seems to be the most promising ligand. 4. the determination of the influence of P-gp on the brain biodistribution of [18F]MH.MZ showing a strong P-gp dependency but no regional alteration. 5. the four-step radiosynthesis and evaluation of [18F]MDL 100907 resulting in another high affine tracer, which is, however, limited due to its low radiochemical yield. 6. the development and evaluation of 3 novel possible 5-HT2A imaging agents combining structural elements of altanserin, MDL 100907 and SR 46349B demonstrating different binding modes of these compounds. 7. the development, the labeling and in vitro evaluation of the novel 5-HT1A antagonistic tracer [18F]AH1.MZ (Ki = 4.2 nM).
Resumo:
This work focused on the synthesis of novel monomers for the design of a series of oligo(p-benzamide)s following two approaches: iterative solution synthesis and automated solid phase protocols. These approaches present a useful method to the sequence-controlled synthesis of side-chain and main-chain functionalized oligomers for the preparation of an immense variety of nanoscaffolds. The challenge in the synthesis of such materials was their modification, while maintaining the characteristic properties (physical-chemical properties, shape persistence and anisotropy). The strategy for the preparation of predictable superstructures was devote to the selective control of noncovalent interactions, monodispersity and monomer sequence. In addition to this, the structure-properties correlation of the prepared rod-like soluble materials was pointed. The first approach involved the solution-based aramide synthesis via introduction of 2,4-dimethoxybenzyl N-amide protective group via an iterative synthetic strategy The second approach focused on the implementation of the salicylic acid scaffold to introduce substituents on the aromatic backbone for the stabilization of the OPBA-rotamers. The prepared oligomers were analyzed regarding their solubility and aggregation properties by systematically changing the degree of rotational freedom of the amide bonds, side chain polarity, monomer sequence and degree of oligomerization. The syntheses were performed on a modified commercial peptide synthesizer using a combination of fluorenylmethoxycarbonyl (Fmoc) and aramide chemistry. The automated synthesis allowed the preparation of aramides with potential applications as nanoscaffolds in supramolecular chemistry, e.g. comb-like-
Resumo:
In this work, two different systems were investigated to develop fundamental understanding of the self-assembly behavior of polyelectrolytes and small organic counterions with a certain geometry. Complexes formed were characterized by light scattering in solution, as well as UV-Vis spectroscopy, analytical ultracentrifugation, gel electrophoresis, zeta potential and IR spectroscopy. The morphologies of the aggregates were observed by AFM in dried state on surface. The charge ratio, the valence and the structure of the counterion were shown to represent key parameters in the complexation. The influence of polyelectrolyte type and molecular weights was also determined for the structure formed.rnrnOne system was mainly focused on the association of double-strand DNA with non-intercalating divalent and tetravalent organic counterions. The other model system involved linear NaPSS and oligolysines. In addition, various influences on the morphology of the charged self-assembly complexes in AFM studies were discussed. It was shown that electrostatic self-assembly of DNA and non-intercalating counterions as well as of a linear synthetic polyelectrolyte with oligolysine counterions that can build mutual hydrogen bonds can yield supramolecular aggregates of a defined size. Various morphologies (flower-like, rod-like, toroidal and spherical) of the assemblies were obtained for different combinations of polyelectrolyte and counterions. Results presented in this work are of importance for the fundamental understanding of the association behavior of various polyelectrolytes and organic counterions. The selection of biopolymers for the study may give an opportunity to transfer the basic research results into biological applications, such as gene therapy or drug delivery.rn
Resumo:
Die vorliegende Arbeit besteht aus zwei Teilen: Im ersten Teil der Arbeit werden supramolekulare Strukturen betrachtet, die durch unterschiedliche Fällungsbedingungen von Polyethylenoxid-block-oligo-p-benzamid-copolymeren erhalten wurden. Durch tropfenweise Zugabe des gelösten Polymers zu Chloroform, ein für Polyethylenoxid selektives Lösemittel, konnten verschiedenste Aggregate hergestellt werden. Von großen Hohlkugel mit einem Durchmesser von mehreren Mikrometern, bis zu kleinen Stäbchen mit den Abmessungen von zehn Nanometern in der Breite und einigen hundert Nanometern Länge, konnten beobachtet werden.rnDer Hauptteil der Arbeit handelt von der Synthese und Charakterisierung eines neuen, konjugierten Oligomers: Oligothiophencarbonsäureamid. Das hierfür nötige Monomer, eine 2-Aminothiophen-5-carbonsäure konnte mittels Gewald-Synthese, eine multikomponenten Ringschlussreaktion dargestellt werden. Diese Methode erlaubt die Herstellung von vierfach substituierten Thiophenen, wobei 3- und 4-Position meist Alkylketten und Ester sind. Das so hergestellte Material konnte in der stufenweise Synthese von Oligothiophencarbonsäureamiden genutzt werden. Die neuen Oligomere zeigten interessante Absorptions- und Fluoreszenzeigenschaften. In Dichlormethan wurde eine bathochrome Verschiebung der Absorptionsbande in Abhängigkeit der Oligomerlänge beobachtet. Das Pentamer erreichte eine Absorptionsenergie, die der Bande des Polythiophencarbonsäureamids entspricht, was bedeutetet, dass die effektive Konjugationslänge erreicht wurde. Im Gegensatz zu den Messungen in Dichlormethan, zeigten die Oligomere Aggregationstendenzen ab dem Trimer in N,N-Dimethylformamid. Die auftretende Charge-Transfer Bande verschwand mit steigenden Konzentrationen. Eine mögliche hypsochrome Verschiebung dieser Bande, deutet auf eine Bildung von H Aggregaten hin. Fluoreszenz und zeitaufgelöste Fluoreszenzmessungen ergaben die für konjugierte Systeme zu erwartenden Effekte. Die Konjugation entlang des Amids konnte ebenfalls mittels quantenmechanischer Berechnung nachgewiesen werden.
Resumo:
In this work self-assembling model systems in aqueous solution were studied. The systems contained charged polymers, polyelectrolytes, that were combined with oppositely charged counterions to build up supramolecular structures. With imaging, scattering and spectroscopic techniques it was investigated how the structure of building units influences the structure of their assemblies. Polyelectrolytes with different chemical structure, molecular weight and morphology were investigated. In addition to linear polyelectrolytes, semi-flexible cylindrical bottle-brush polymers that possess a defined cross-section and a relatively high persistence along the backbone were studied. The polyelectrolytes were combined with structural organic counterions having charge numbers one to four. Especially the self-assembly of polyelectrolytes with different tetravalent water-soluble porphyrins was studied. Porphyrins have a rigid aromatic structure that has a structural effect on their self-assembly behavior and through which porphyrins are capable of self-aggregation via π-π interaction. The main focus of the thesis is the self-assembly of cylindrical bottle-brush polyelectrolytes with tetravalent porphyrins. It was shown that the addition of porphyrins to oppositely charged brush molecules induces a hierarchical formation of stable nanoscale brush-porphyrin networks. The networks can be disconnected by addition of salt and single porphyrin-decoratedrncylindrical brush polymers are obtained. These two new morphologies, brush-porphyrin networks and porphyrin-decorated brush polymers, may have potential as functional materials with interesting mechanical and optical properties.
Resumo:
Die vorgelegte Dissertation beschäftigt sich mit der Darstellung und Untersuchung von funktionellen Farbstoffen auf der Basis von Rylendiimiden. Diese Substanzklasse zeichnet sich durch gute Funktionalisierbarkeit, hohe chemische und photochemische Stabilität sowie durch hohe Fluoreszenzquantenausbeuten und Extinktionskoeffizienten aus. Rylendiimide spielen eine bedeutsame Rolle in den modernen Materialwissenschaften. Ein Schwerpunkt der Arbeit liegt auf der Synthese und Untersuchung von neuen Perylendiimiden (PDI) im Hinblick auf eine Anwendung in der organischen Elektronik. Das Substitutionsmuster der PDI hat einen signifikanten Einflussrnauf deren supramolekulares Verhalten und die Leistungsfähigkeit in elektronischen Bauteilen. Durch das Einführen neuer Substituenten konnten weitergehende Erkenntnisse über das supramolekulare Verhalten der PDI gewonnenrnwerden. Multichromophore sind wichtige Modellsysteme zur Untersuchung vonrnEnergietransportprozessen und Einzelphotonenquellen. Daher liegt ein weiterer Schwerpunkt auf der Synthese multichromophorer PDI-Systeme. Neben der Darstellung definierter dendritischer Nanoteilchen auf Basis von Poly(phenylenethinylen)-Dendrimeren beschäftigt sich dieser Teil auch mit der Synthese hochverzweigter ethinylverknüpfter Polymere auf Basis von PDI-Monomeren. Aufgrund ihrer außergewöhnlichen photochemischen Eigenschaften spielen Perylen- und Terrylendiimide eine wichtige Rolle als Fluoreszenzmarker.rnDaher beschäftigt sich ein weiterer Aspekt dieser Arbeit mit der Synthese vonrnFluoreszenzmarkern, die sowohl in Polymerisationsreaktionen als auch inrnbiologischen Systemen Anwendung finden können.
Resumo:
Molecular self-assembly takes advantage of supramolecular non-covalent interactions (ionic, hydrophobic, van der Waals, hydrogen and coordination bonds) for the construction of organized and tunable systems. In this field, lipophilic guanosines can represent powerful building blocks thanks to their aggregation proprieties in organic solvents, which can be controlled by addition or removal of cations. For example, potassium ion can template the formation of piled G-quartets structures, while in its absence ribbon-like G aggregates are generated in solution. In this thesis we explored the possibility of using guanosines as scaffolds to direct the construction of ordered and self-assembled architectures, one of the main goals of bottom-up approach in nanotechnology. In Chapter III we will describe Langmuir-Blodgett films obtained from guanosines and other lipophilic nucleosides, revealing the “special” behavior of guanine in comparison with the other nucleobases. In Chapter IV we will report the synthesis of several thiophene-functionalized guanosines and the studies towards their possible use in organic electronics: the pre-programmed organization of terthiophene residues in ribbon aggregates could allow charge conduction through π-π stacked oligothiophene functionalities. The construction and the behavior of some simple electronic nanodevices based on these organized thiopehene-guanosine hybrids has been explored.
Resumo:
Im Rahmen dieser Arbeit wurden neuartige funktionale Nanographene synthetisiert und hinsichtlich ihrer strukturellen und elektronischen Eigenschaften charakterisiert. Basierend auf dem Strukturmotiv des Graphens konnten anellierte polyzyklische aromatische Kohlenwasserstoffe (PAKs) mit unterschiedlichen Seitenverhältnissen strukturdefiniert erhalten und gezielt in der Peripherie funktionalisiert werden. Basierend auf dem Synthesekonzept einer „Vorplanarisierung“ konnten Nanographen-Scheiben mit einem Durchmesser von bis zu 3 nm in hoher Reinheit erhalten werden. Durch die Entwicklung von Polyphenylen-Vorläufern mit einem gewinkelten Rückgrat konnten erstmals defektfreie und lösliche Nanographen-Streifen (GNRs) mit Breiten von 1,0 - 2,1 nm und Längen von über 40 nm synthetisiert werden.rnrnAm Hexa-peri-hexabenzocoronen (HBC) war es möglich, durch die Einführung kurzer linearer Alkylreste in der Peripherie den inter- und intrakolumnaren Abstand nach Selbstorganisation zu reduzieren. In Mischungen mit Perylentetracarboxydiimid (PDI) als Akzeptor konnte durch eine erhöhte Dichte und eine verbesserte Ladungsträgermobilität eine relative Steigerung der Effizienz von Donor-Akzeptor-Heteroübergangs-Solarzellen um 9 % erreicht werden. Eine kovalente Verknüpfung von HBC und PDI erlaubte hier die vollständige Kontrolle der supramolekularen Organisation, des Phasenverhaltens sowie des Abstandes zwischen Donor und Akzeptor.rnrnBasierend auf den im Rahmen dieser Arbeit entwickelten Synthesekonzepten, eröffnen sich nun zahlreiche Möglichkeiten zur Entwicklung weiterer Nanographene, die entsprechend der gewünschten Anwendung funktionalisiert werden können und ein besseres Verständnis der Eigenschaften graphenartiger Materialien erlauben werden.
Resumo:
The common ground of this study is the development of novel synthetic strategies to extended one-, two- and three-dimensional aromate-rich systems for which a number of applications are envisaged. rnThe point of departure is the synthesis and characterization of highly symmetric macrocyclic PAHs (polycyclic aromatic hydrocarbons) for which various aspects of supramolecular chemistry will be investigated. The versatility of the Yamamoto macrocyclization will be demonstrated on the basis of a set of cyclic trimers that exhibit a rich supramolecular chemistry. 1,10-phenanthroline, triphenylene and ortho-terphenyl building blocks have been successfully assembled to the corresponding macrocycles following the newly developed synthetic route. Scanning-tunneling microscopy (STM) and two-dimensional wide-angle X-ray scattering (2D-WAXS) were used to study the two- and three-dimensional self-assembly, respectively.rnSecondly, the development of chemical approaches to highly shape-anisotropic graphene nanoribbons (GNRs) and related nanographene molecules shall be discussed. Aryl-aryl coupling was used for the bottom-up fabrication of dendronized monomers, polymers and model compounds. Subsequently, these structures were converted into the final graphene material using oxidative (Scholl-type) cyclodehydrogenation. The GNRs thus obtained are characterized by an unprecedented length and lateral extension. The relevance of structural tailoring in the field of well-defined graphene materials is discussed in detail as only the chemical approach provides full geometry control. rnLastly, novel pathways towards the synthesis of extended three-dimensional networks that are dominated by nitrogen-rich motifs will be presented. If porous, these materials hold a great potential in the fields of gas and energy storage as well as for applications in catalysis. Hence, poly(aminal) networks based on melamine as crosslinking unit were synthesized and characterized with respect to the applications mentioned above. As set of conjugated poly(azomethine) networks was investigated regarding their use as a novel class of organic semiconductors for photocatalytic water splitting. The network structures described in this chapter can also be subjected to a controlled pyrolysis yielding mesoporous, nitrogen-rich carbon materials that were evaluated as active component for supercapacitors.rn