994 resultados para MG-GD ALLOYS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mg-doped AlGaN and GaN/AlGaN superlattice are grown by metalorganic chemical vapour deposition (MOCVD). Rapid thermal annealing (RTA) treatments are carried out on the samples. Hall and high resolution x-ray diffraction measurements are used to characterize the electrical and structural prosperities of the as-grown and annealed samples, respectively. The results of hall measurements show that after annealing, the Mg-doped AlGaN sample can not obtain the distinct hole concentration and can acquire a resistivity of 1.4 x 10(3) Omega cm. However, with the same annealing treatment, the GaN/AlGaN superlattice sample has a hole concentration of 1.7 x 10(17) cm(-3) and of Mg acceptors, which leads to higher hole concentration and lower p-type resistivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AlGaN/GaN npn heterojunction bipolar transistor structures were grown by low-pressure MOCVD. Secondary ion mass spectroscopy (SIMS) measurements were carried out to study the Mg memory effect and redistribution in the emitter-base junction. The results indicated that there is a Mg-rich film formed in the ongrowing layer after the Cp2Mg source is switched off. The Mg-rich film can be confined in the base section by switching off the Cp2Mg source for appropriate time before the end of base growth. Low temperature growth of the undoped GaN spacer suppresses the Mg redistribution from Mg rich film. The delay rate of the Mg profile in sample C with spacer growing in low temperature is about 56 nm/decade, which becomes sharper than 80 nm/decade of the samples A and B without low temperature spacer. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using microphotoluminescence (mu-PL), in dilute N GaAs1-xNx alloys, we observe a PL band far above the bandgap E-0 with its peak energy following the so-called E+ transition, but with contribution from perturbed GaAs host states in a broad spectral range (> 100 meV). This finding is in sharp contrast to the general understanding that E+ is associated with a well-defined conduction band level (either L-1c or N-x). Beyond this insight regarding the strong perturbation of the GaAs band structure caused by N incorporation, we demonstrate that a small amount of isoelectronic doping in conjunction with mu-PL allows direct observation of above-bandgap transitions that are not usually accessible by PL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temperature dependence of the formation of nano-scale indium clusters in InAlGaN quaternary alloys, which are grown by metalorganic chemical vapour deposition on GaN/Si(111) epilayers, is investigated. Firm evidence is provided to support the existence of phase separation, or nano-scale In-rich clusters, by the combined results of high-resolution transmission electron microscopy (HRTEM), high-resolution x-ray diffraction (HRXRD) and micro-Raman spectra. The results of HRXRD and Raman spectra indicate that the degree of phase separation is strong and the number of In clusters in the InAlGaN layers on silicon substrate is higher at lower growth temperatures than that at higher growth temperatures, which limits the In and Al incorporated into the InAlGaN quaternary alloys. The detailed mechanism of luminescence in this system is studied by low temperature photoluminescence (LT-PL). We conclude that the ultraviolet (UV) emission observed in the quaternary InAlGaN alloys arises from the matrix of a random alloy, and the second emission peak in the blue-green region results from the nano-scale indium clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chain-like Mg-doped ZnO nanoparticles were prepared using a wet chemical method combined with subsequent heat treatment. The blueshifted near-band-edge emission of the doped ZnO sample with respect to the undoped one was investigated by temperature-dependent photoluminescence. Based on the energy shift of the free-exciton transition, a band gap enlargement of similar to 83 meV was estimated, which seems to result in the equivalent shift of the bound-exciton transition. At 50 K, the transformation from the donor-acceptor-pair to free-to-acceptor emissions was observed for both the undoped and doped samples. The results show that Mg doping leads to the decrease of the acceptor binding energy. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the growth and optical properties of AlInGaN alloys in this article. By the measurement of three samples, we found that the incorporation of In decreases with the increase of temperature, while there is nearly no change for the incorporation of Al. The sample grown at the lowest temperature had the best material and optical properties, which owes to the high In component, because the In component can reduce defects and improve the material quality. We also used the time-resolved photoluminescence(PL) to study the mechanism of recombination of carriers, and found that the time dependence of PL intensity was not in exponential decay, but in stretched-exponential decay. Through the study of the character of this decay, we come to the conclusion that the emission comes from the recombination of localized excitons. Once more, this localization exhibites the character of quantum dots, and the stretched, exponential decay results from the hopping of carriers between different localized states. In addition, we have used the relation of emission energy dependence of carrier's lifetime and the character of radiative recombination and non-radiative combination to confirm our conclusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two Mg-doped GaN films with different doping concentrations were grown by a metalorganic chemical vapor deposition technique. Photoluminescence (PL) experiments were carried out to investigate the optical properties of these films. For highly Mg-doped GaN, the PL spectra at 10 K are composed of a blue luminescence (BL) band at 2.857 eV and two excitonic luminescence lines at 3.342 eV and 3.282 eV, in addition to a L2 phonon replica at 3.212 eV. The intensity of the L1 line decreases monotonously with an increase,in temperature. However, the intensity of the L2 line first slowly increases at first, and then decreases quickly with an increase in temperature. The two lines are attributed to bound excitonic emissions at extended defects. The BL band is most likely due to the transition from deep donor Mg-V-N complex to Mg shallow acceptor. From the temperature dependence of the luminescence peak intensity of the BL band, the activation energy of acceptor Mg was found to be 290 meV. (C) 2003 American Vacuum Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic semiconductor GdxSi1-x was prepared by low-energy dual ion-beam epitaxy. GdxSi1-x shows excellent magnetic properties at room temperature. A high magnetic moment of 10 mu(B) per Gd atom is observed. The high atomic magnetic moment is interpreted as being a result of the RKKY mechanism. The indirect exchange interaction between ions is strong at large distances due to the low state density of the carriers in the magnetic semiconductor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the two samples of AIInGaN, i.e., 1-mum GaN grown at 1030degreesC on the buffer and followed by a 0.6-mum-thick epilayer of AIInGaN under the low pressure of 76 Torr and the AIInGaN layer deposited directly on the buffer layer without the high-temperature GaN layer, by temperature-dependent photoluminescence (PL) spectroscopy and picosecond time-resolved photoluminescence (TRPL) spectroscopy. The TRPL signals of both the samples were fitted well as a stretched exponential decay at all temperatures, indicating significant disorder in the material. We attribute the disorder to nanoscale quantum dots or discs of high indium concentration. Temperature dependence of dispersive exponent beta shows that the stretched exponential decay of the two samples comes from different mechanisms. The different depths of the localization potential account for the difference, which is illustrated by the results of temperature dependence of radiative recombination lifetime and PL peak energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GaN1-xPx ternary alloys with high P compositions were deposited on sapphire substrates by means of metal-organic chemical vapor deposition. Depth profiles of the elements indicate that the maximum P/N composition ratio is about 17% and a uniform distribution of the P atoms in the alloys is achieved. 2theta/omega XRD spectra demonstrate that the (0002) peak of the GaN1-xPx alloys shifts to smaller angle with increasing P composition. From the photoluminescence (PL) spectra, the red shifts to the bandedge emission of GaN are determined to be 73, 78, 100 and 87 meV for the GaN1-xPx alloys with the P/N composition ratios of 3%, 11%, 15% and 17%, respectively. No PL peak related to GaP is observed, indicating that the phase separation between GaN and GaP is well suppressed in our GaN1-xPx samples. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic/nonmagnetic p-n junction was prepared by implanting gadolinium into the n-type silicon with low-energy dual-ion-beam epitaxy technology. The magnetic layer GdxSi1-x shows excellent magnetic properties at room temperature. High magnetic moment 10mu(B) per Gd atom is observed, which is interpreted by RKKY mechanism. Magnetic/nonmagnetic p-n junctions show rectifying behaviour, but no magnetoresistance is observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A set of GaAs1-xNx samples with small nitrogen composition (x<1%) were investigated by continuous-wave photoluminescence (PL), pulse-wave excitation PL, and time-resolved PL. In the PL spectra, an extra transition located at the higher-energy side of the commonly reported N-related emissions was observed. By measuring the PL dependence on temperature and excitation power, the PL peak was identified as a transition of alloy band edge-related recombination in GaAsN. The PL dynamics further confirms its intrinsic nature as being associated with the band edge rather than N-related bound states. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnS1-xTex (0.02less than or equal toxless than or equal to0.3) alloys are studied by photoluminescence under hydrostatic pressure at room temperature. Only a wide emission band is observed for each sample. Its peak energy is much lower than the corresponding band gap of alloys. These bands are ascribed to the radiative annihilation of excitons bound at Te-n(ngreater than or equal to2) isoelectronic centers. The pressure coefficients of the emission bands are smaller than those of alloy band gaps from 48% to 7%. The difference of the pressure coefficient of the emission band and the band gap increases when the binding energy of Te-n centers decreases. It seems contrary to our expectation and needs further analysis. The integrated intensities of emission bands decrease with increasing pressure due to the decreasing of the absorption coefficient associated with the Te-n centers under pressure. According to this model the Stokes shifts between the emission and absorption bands of the Te-n centers are calculated, which decrease with the increasing Te composition in alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Behaviors of the photoluminescence blue-band and near-bandgap peak and the relevant thermal ionization energies of the shallow and deep Mg-related acceptors have been studied, respectively. The 2.989 eV blue-band is attributed to the deep donor-acceptor-pair transitions involving a deep Mg-related acceptor at E-v+0.427 eV. The blueshift with increasing excitation power is explained by variation in the contribution of close and distant donor-acceptor-pairs to the luminescence. The redshift with increasing temperature results from thermal release of carriers from close donor-acceptor-pairs. The 3.26 eV near-bandgap peak is attributed to the shallow donor-acceptor-pair transitions involving a shallow Mg-related acceptor at E-v+0.223 eV. The relevant thermal ionization energies of the shallow and deep Mg-related acceptors, being about E-v+0.16 and E-v+0.50eV, are determined from deep-level transient Fourier spectroscopy measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIN powders were prepared by in-situ synthesis technique. It is a reaction of binary molten Al-Mg alloys with highly pure nitrogen. It was confirmed through thermodynamics calculation that Mg element in Al-Mg alloys can decrease oxygen content in the reacting system. Thus, nitridation reaction can be performed to form AIN. Moreover, an analysis of kinetics shows that the nitridation reaction of Al-Mg alloys can be accelerated and transferred rapidly with the increment of Mg content.