994 resultados para Gryphius, Andreas, 1616-1664.
Resumo:
In this paper, we introduce a statistical data-correction framework that aims at improving the DSP system performance in presence of unreliable memories. The proposed signal processing framework implements best-effort error mitigation for signals that are corrupted by defects in unreliable storage arrays using a statistical correction function extracted from the signal statistics, a data-corruption model, and an application-specific cost function. An application example to communication systems demonstrates the efficacy of the proposed approach.
Resumo:
The worsening of process variations and the consequent increased spreads in circuit performance and consumed power hinder the satisfaction of the targeted budgets and lead to yield loss. Corner based design and adoption of design guardbands might limit the yield loss. However, in many cases such methods may not be able to capture the real effects which might be way better than the predicted ones leading to increasingly pessimistic designs. The situation is even more severe in memories which consist of substantially different individual building blocks, further complicating the accurate analysis of the impact of variations at the architecture level leaving many potential issues uncovered and opportunities unexploited. In this paper, we develop a framework for capturing non-trivial statistical interactions among all the components of a memory/cache. The developed tool is able to find the optimum memory/cache configuration under various constraints allowing the designers to make the right choices early in the design cycle and consequently improve performance, energy, and especially yield. Our, results indicate that the consideration of the architectural interactions between the memory components allow to relax the pessimistic access times that are predicted by existing techniques.
Resumo:
The area and power consumption of low-density parity check (LDPC) decoders are typically dominated by embedded memories. To alleviate such high memory costs, this paper exploits the fact that all internal memories of a LDPC decoder are frequently updated with new data. These unique memory access statistics are taken advantage of by replacing all static standard-cell based memories (SCMs) of a prior-art LDPC decoder implementation by dynamic SCMs (D-SCMs), which are designed to retain data just long enough to guarantee reliable operation. The use of D-SCMs leads to a 44% reduction in silicon area of the LDPC decoder compared to the use of static SCMs. The low-power LDPC decoder architecture with refresh-free D-SCMs was implemented in a 90nm CMOS process, and silicon measurements show full functionality and an information bit throughput of up to 600 Mbps (as required by the IEEE 802.11n standard).
Resumo:
In this paper, we investigate the impact of faulty memory bit-cells on the performance of LDPC and Turbo channel decoders based on realistic memory failure models. Our study investigates the inherent error resilience of such codes to potential memory faults affecting the decoding process. We develop two mitigation mechanisms that reduce the impact of memory faults rather than correcting every single error. We show how protection of only few bit-cells is sufficient to deal with high defect rates. In addition, we show how the use of repair-iterations specifically helps mitigating the impact of faults that occur inside the decoder itself.
Resumo:
Inherently error-resilient applications in areas such as signal processing, machine learning and data analytics provide opportunities for relaxing reliability requirements, and thereby reducing the overhead incurred by conventional error correction schemes. In this paper, we exploit the tolerable imprecision of such applications by designing an energy-efficient fault-mitigation scheme for unreliable data memories to meet target yield. The proposed approach uses a bit-shuffling mechanism to isolate faults into bit locations with lower significance. This skews the bit-error distribution towards the low order bits, substantially limiting the output error magnitude. By controlling the granularity of the shuffling, the proposed technique enables trading-off quality for power, area, and timing overhead. Compared to error-correction codes, this can reduce the overhead by as much as 83% in read power, 77% in read access time, and 89% in area, when applied to various data mining applications in 28nm process technology.
Resumo:
We consider the problem of linking web search queries to entities from a knowledge base such as Wikipedia. Such linking enables converting a user’s web search session to a footprint in the knowledge base that could be used to enrich the user profile. Traditional methods for entity linking have been directed towards finding entity mentions in text documents such as news reports, each of which are possibly linked to multiple entities enabling the usage of measures like entity set coherence. Since web search queries are very small text fragments, such criteria that rely on existence of a multitude of mentions do not work too well on them. We propose a three-phase method for linking web search queries to wikipedia entities. The first phase does IR-style scoring of entities against the search query to narrow down to a subset of entities that are expanded using hyperlink information in the second phase to a larger set. Lastly, we use a graph traversal approach to identify the top entities to link the query to. Through an empirical evaluation on real-world web search queries, we illustrate that our methods significantly enhance the linking accuracy over state-of-the-art methods.
Resumo:
BACKGROUND: Patient-reported outcomes (PROs) might detect more toxic effects of radiotherapy than do clinician-reported outcomes. We did a quality of life (QoL) substudy to assess PROs up to 24 months after conventionally fractionated or hypofractionated radiotherapy in the Conventional or Hypofractionated High Dose Intensity Modulated Radiotherapy in Prostate Cancer (CHHiP) trial.
METHODS: The CHHiP trial is a randomised, non-inferiority phase 3 trial done in 71 centres, of which 57 UK hospitals took part in the QoL substudy. Men with localised prostate cancer who were undergoing radiotherapy were eligible for trial entry if they had histologically confirmed T1b-T3aN0M0 prostate cancer, an estimated risk of seminal vesicle involvement less than 30%, prostate-specific antigen concentration less than 30 ng/mL, and a WHO performance status of 0 or 1. Participants were randomly assigned (1:1:1) to receive a standard fractionation schedule of 74 Gy in 37 fractions or one of two hypofractionated schedules: 60 Gy in 20 fractions or 57 Gy in 19 fractions. Randomisation was done with computer-generated permuted block sizes of six and nine, stratified by centre and National Comprehensive Cancer Network (NCCN) risk group. Treatment allocation was not masked. UCLA Prostate Cancer Index (UCLA-PCI), including Short Form (SF)-36 and Functional Assessment of Cancer Therapy-Prostate (FACT-P), or Expanded Prostate Cancer Index Composite (EPIC) and SF-12 quality-of-life questionnaires were completed at baseline, pre-radiotherapy, 10 weeks post-radiotherapy, and 6, 12, 18, and 24 months post-radiotherapy. The CHHiP trial completed accrual on June 16, 2011, and the QoL substudy was closed to further recruitment on Nov 1, 2009. Analysis was on an intention-to-treat basis. The primary endpoint of the QoL substudy was overall bowel bother and comparisons between fractionation groups were done at 24 months post-radiotherapy. The CHHiP trial is registered with ISRCTN registry, number ISRCTN97182923.
FINDINGS: 2100 participants in the CHHiP trial consented to be included in the QoL substudy: 696 assigned to the 74 Gy schedule, 698 assigned to the 60 Gy schedule, and 706 assigned to the 57 Gy schedule. Of these individuals, 1659 (79%) provided data pre-radiotherapy and 1444 (69%) provided data at 24 months after radiotherapy. Median follow-up was 50·0 months (IQR 38·4-64·2) on April 9, 2014, which was the most recent follow-up measurement of all data collected before the QoL data were analysed in September, 2014. Comparison of 74 Gy in 37 fractions, 60 Gy in 20 fractions, and 57 Gy in 19 fractions groups at 2 years showed no overall bowel bother in 269 (66%), 266 (65%), and 282 (65%) men; very small bother in 92 (22%), 91 (22%), and 93 (21%) men; small bother in 26 (6%), 28 (7%), and 38 (9%) men; moderate bother in 19 (5%), 23 (6%), and 21 (5%) men, and severe bother in four (<1%), three (<1%) and three (<1%) men respectively (74 Gy vs 60 Gy, ptrend=0.64, 74 Gy vs 57 Gy, ptrend=0·59). We saw no differences between treatment groups in change of bowel bother score from baseline or pre-radiotherapy to 24 months.
INTERPRETATION: The incidence of patient-reported bowel symptoms was low and similar between patients in the 74 Gy control group and the hypofractionated groups up to 24 months after radiotherapy. If efficacy outcomes from CHHiP show non-inferiority for hypofractionated treatments, these findings will add to the growing evidence for moderately hypofractionated radiotherapy schedules becoming the standard treatment for localised prostate cancer.
FUNDING: Cancer Research UK, Department of Health, and the National Institute for Health Research Cancer Research Network.
Resumo:
Purpose: The recently completed Chinese "Million Cataract Surgeries Program" (MCSP) is among the largest such campaigns ever, providing 1.05 million operations. We report MCSP outcomes for the first time, in Jiangxi, the province with the greatest program output. Methods: Ten county hospitals participating in MCSP were selected in Jiangxi (range of gross domestic product per capita US$743-2998). Each hospital sought to enroll 75 consecutive MCSP patients aged ≥50 years. Data recorded included type of cataract procedure, bilateral uncorrected visual acuity (UCVA) and best-corrected visual acuity (BCVA), and refractive error pre- and ≥50 days postoperatively. Results: Among 715 patients (mean age 72.3±9.1 years, 55.5% female), preoperative UCVA was <3/60 (legally blind) bilaterally in 13.3% and unilaterally in the operated eye in 50.9%. No subjects had UCVA >6/18 preoperatively. Small incision cataract surgery was performed in 92.3% patients. Among 662 patients (92.6%) completing follow-up was ≥ 40 days after surgery, BCVA was ≥6/18 in 80.1%, UCVA was ≥6/18 in 57.1% and UCVA was <3/60 in 2.1%. Older age (p<0.001), female sex (p=0.04), worse refractive error (p=0.02) and presence of intra- (p=0.002) and postoperative surgical complications (p<0.001), were independently associated with worse postoperative UCVA. Based on these results, the MCSP cured an estimated 124,950 cases (13.3%×[100-2.1%]×1.05 million) of bilateral and 502,500 (50.9%×[100-2.1%]×1.05 million) of unilateral blindness. Conclusions: Due to relatively good outcomes and the large number of surgeries performed on blind persons, the sight-restoring impact of the MCSP was probably substantial. © Informa Healthcare USA, Inc.
Resumo:
Background: Poor follow-up after cataract surgery in developing countries makes assessment of operative quality uncertain. We aimed to assess two strategies to measure visual outcome: recording the visual acuity of all patients 3 or fewer days postoperatively (early postoperative assessment), and recording that of only those patients who returned for the final follow-up examination after 40 or more days without additional prompting. Methods: Each of 40 centres in ten countries in Asia, Africa, and Latin America recruited 40-120 consecutive surgical cataract patients. Operative-eye best-corrected visual acuity and uncorrected visual acuity were recorded before surgery, 3 or fewer days postoperatively, and 40 or more days postoperatively. Clinics logged whether each patient had returned for the final follow-up examination without additional prompting, had to be actively encouraged to return, or had to be examined at home. Visual outcome for each centre was defined as the proportion of patients with uncorrected visual acuity of 6/18 or better minus the proportion with uncorrected visual acuity of 6/60 or worse, and was calculated for each participating hospital with results from the early assessment of all patients and the late assessment of only those returning unprompted, with results from the final follow-up assessment for all patients used as the standard. Findings: Of 3708 participants, 3441 (93%) had final follow-up vision data recorded 40 or more days after surgery, 1831 of whom (51% of the 3581 total participants for whom mode of follow-up was recorded) had returned to the clinic without additional prompting. Visual outcome by hospital from early postoperative and final follow-up assessment for all patients were highly correlated (Spearman's rs=0·74, p<0·0001). Visual outcome from final follow-up assessment for all patients and for only those who returned without additional prompting were also highly correlated (rs=0·86, p<0·0001), even for the 17 hospitals with unprompted return rates of less than 50% (rs=0·71, p=0·002). When we divided hospitals into top 25%, middle 50%, and bottom 25% by visual outcome, classification based on final follow-up assessment for all patients was the same as that based on early postoperative assessment for 27 (68%) of 40 centres, and the same as that based on data from patients who returned without additional prompting in 31 (84%) of 37 centres. Use of glasses to optimise vision at the time of the early and late examinations did not further improve the correlations. Interpretation: Early vision assessment for all patients and follow-up assessment only for patients who return to the clinic without prompting are valid measures of operative quality in settings where follow-up is poor. Funding: ORBIS International, Fred Hollows Foundation, Helen Keller International, International Association for the Prevention of Blindness Latin American Office, Aravind Eye Care System. © 2013 Congdon et al. Open Access article distributed under the terms of CC BY.
Resumo:
β-amyloid1-42 (Aβ1-42) is a major endogenous pathogen underlying the aetiology of Alzheimer's disease (AD). Recent evidence indicates that soluble Aβ oligomers, rather than plaques, are the major cause of synaptic dysfunction and neurodegeneration. Small molecules that suppress Aβ aggregation, reduce oligomer stability or promote off-pathway non-toxic oligomerization represent a promising alternative strategy for neuroprotection in AD. MRZ-99030 was recently identified as a dipeptide that modulates Aβ1-42 aggregation by triggering a non-amyloidogenic aggregation pathway, thereby reducing the amount of intermediate toxic soluble oligomeric Aβ species. The present study evaluated the relevance of these promising results with MRZ-99030 under pathophysiological conditions i.e. against the synaptotoxic effects of Aβ oligomers on hippocampal long term potentiation (LTP) and two different memory tasks. Aβ1-42 interferes with the glutamatergic system and with neuronal Ca2+ signalling and abolishes the induction of LTP. Here we demonstrate that MRZ-99030 (100–500 nM) at a 10:1 stoichiometric excess to Aβ clearly reversed the synaptotoxic effects of Aβ1-42 oligomers on CA1-LTP in murine hippocampal slices. Co-application of MRZ-99030 also prevented the two-fold increase in resting Ca2+ levels in pyramidal neuron dendrites and spines triggered by Aβ1-42 oligomers. In anaesthetized rats, pre-administration of MRZ-99030 (50 mg/kg s.c.) protected against deficits in hippocampal LTP following i.c.v. injection of oligomeric Aβ1-42. Furthermore, similar treatment significantly ameliorated cognitive deficits in an object recognition task and under an alternating lever cyclic ratio schedule after the i.c.v. application of Aβ1-42 and 7PA2 conditioned medium, respectively. Altogether, these results demonstrate the potential therapeutic benefit of MRZ-99030 in AD.
Resumo:
Noncollinear four-wave-mixing (FWM) techniques at near-infrared (NIR), visible, and ultraviolet frequencies have been widely used to map vibrational and electronic couplings, typically in complex molecules. However, correlations between spatially localized inner-valence transitions among different sites of a molecule in the extreme ultraviolet (XUV) spectral range have not been observed yet. As an experimental step toward this goal, we perform time-resolved FWM spectroscopy with femtosecond NIR and attosecond XUV pulses. The first two pulses (XUV-NIR) coincide in time and act as coherent excitation fields, while the third pulse (NIR) acts as a probe. As a first application, we show how coupling dynamics between odd- and even-parity, inner-valence excited states of neon can be revealed using a two-dimensional spectral representation. Experimentally obtained results are found to be in good agreement with ab initio time-dependent R-matrix calculations providing the full description of multielectron interactions, as well as few-level model simulations. Future applications of this method also include site-specific probing of electronic processes in molecules.
Resumo:
Due to its complex and dynamic fine-scale structure, the chromosphere is a particularly challenging region of the Sun's atmosphere to understand. It is now widely accepted that to model chromospheric dynamics, even on a magnetohydrodynamic (MHD) scale, while also calculating spectral line emission, one must realistically include the effects of partial ionization and radiative transfer in a multi-fluid plasma under non-LTE conditions. Accurate quantification of MHD wave energetics must befounded on a precise identification of the actual wave mode being observed. This chapter focuses on MHD kink-mode identification, MHD sausage mode identification, and MHD torsional Alfvén wave identification. It then reviews progress in determining more accurate energy flux estimations of specific MHD wave modes observed in the chromosphere. The chapter finally examines how the discovery of these MHD wave modes has helped us advance the field of chromosphericmagnetoseismology.
Resumo:
This chapter reviews the recent observations of waves and oscillations manifesting in fine-scale magnetic structures in the solar photosphere, which are often interpreted as the "building blocks' of the magnetic Sun. The authors found, through phase relationships between the various waveforms, that small-scale magnetic bright points (MBPs) in the photosphere demonstrated signatures of specific magnetoacoustic waves, in particular the sausage and kink modes. Modern magnetohydrodynamic (MHD) simulations of the lower solar atmosphere clearly show how torsional motions can easily be induced in magnetic elements in the photosphere through the processes of vortical motions and/or buffeting by neighboring granules. The authors detected significant power associated with high-frequency horizontal motions, and suggested that these cases may be especially important in the creation of a turbulent environment that efficiently promotes Alfvén wave dissipation.
Resumo:
Cross education is the process whereby training of one limb gives rise to increases in the subsequent performance of its opposite counterpart. The execution of many unilateral tasks is associated with increased excitability of corticospinal projections from primary motor cortex (M1) to the opposite limb. It has been proposed that these effects are causally related. Our aim was to establish whether changes in corticospinal excitability arising from prior training of the opposite limb determine levels of interlimb transfer.
We used three vision conditions shown previously to modulate the excitability of corticospinal projections to the inactive (right) limb during wrist flexion movements performed by the training (left) limb. These were: mirrored visual feedback of the training limb; no visual feedback of either limb; and visual feedback of the inactive limb. Training comprised 300 discrete, ballistic wrist flexion movements executed as rapidly as possible. Performance of the right limb on the same task was assessed prior to, at the mid point of, and following left limb training.
There was no evidence that variations in the excitability of corticospinal projections (assessed by transcranial magnetic stimulation (TMS)) to the inactive limb were associated with, or predictive of, the extent of interlimb transfer that was expressed. There were however associations between alterations in muscle activation dynamics observed for the untrained limb, and the degree of positive transfer that arose from training of the opposite limb.
The results suggest that the acute adaptations that mediate the bilateral performance gains realised through unilateral practice of this ballistic wrist flexion task are mediated by neural elements other than those within M1 that are recruited at rest by single-pulse TMS.
Resumo:
The paper details on-chip inductor optimization for a reconfigurable continuous-time delta-sigma (Δ-Σ) modulator based radio-frequency analog-to-digital converter. Inductor optimisation enables the Δ-Σ modulator with Q enhanced LC tank circuits employing a single high Q-factor on-chip inductor and lesser quantizer levels thereby reducing the circuit complexity for excess loop delay, power dissipation and dynamic element matching. System level simulations indicate at a Q-factor of 75 Δ- Σ modulator with a 3-level quantizer achieves dynamic ranges of 106, 82 dB and 84 dB for RFID, TETRA, and Galileo over bandwidths of 200 kHz, 10 MHz and 40 MHz respectively.