Mitigating the Impact of Faults in Unreliable Memories for Error-Resilient Applications


Autoria(s): Ganapathy, Shrikanth; Karakonstantis, Georgios; Teman, Adam; Burg, Andreas
Data(s)

2015

Resumo

<p>Inherently error-resilient applications in areas such as signal processing, machine learning and data analytics provide opportunities for relaxing reliability requirements, and thereby reducing the overhead incurred by conventional error correction schemes. In this paper, we exploit the tolerable imprecision of such applications by designing an energy-efficient fault-mitigation scheme for unreliable data memories to meet target yield. The proposed approach uses a bit-shuffling mechanism to isolate faults into bit locations with lower significance. This skews the bit-error distribution towards the low order bits, substantially limiting the output error magnitude. By controlling the granularity of the shuffling, the proposed technique enables trading-off quality for power, area, and timing overhead. Compared to error-correction codes, this can reduce the overhead by as much as 83% in read power, 77% in read access time, and 89% in area, when applied to various data mining applications in 28nm process technology.</p>

Formato

application/pdf

Identificador

http://pure.qub.ac.uk/portal/en/publications/mitigating-the-impact-of-faults-in-unreliable-memories-for-errorresilient-applications(d2106c2b-0c77-4e64-b76e-8a36a7d34f3a).html

http://dx.doi.org/10.1145/2744769.2744871

http://pure.qub.ac.uk/ws/files/17545934/preprocessor.pdf

Idioma(s)

eng

Publicador

ACM

Direitos

info:eu-repo/semantics/openAccess

Fonte

Ganapathy , S , Karakonstantis , G , Teman , A & Burg , A 2015 , Mitigating the Impact of Faults in Unreliable Memories for Error-Resilient Applications . in Proceedings of the 52nd Annual Design Automation Conference . , 102 , ACM , Design Automation Conference (DAC 2015) , San Francisco , United States , 7-11 June . DOI: 10.1145/2744769.2744871

Palavras-Chave #Approximate Computing #Bit-shuffling #Error Correction #Error-resilient Applications #Priority-ECC #Significance-driven computing #Unreliable Memory #/dk/atira/pure/subjectarea/asjc/1700/1706 #Computer Science Applications #/dk/atira/pure/subjectarea/asjc/2200/2207 #Control and Systems Engineering #/dk/atira/pure/subjectarea/asjc/2200/2208 #Electrical and Electronic Engineering #/dk/atira/pure/subjectarea/asjc/2600/2611 #Modelling and Simulation
Tipo

contributionToPeriodical