965 resultados para quantum dots formation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Photoluminescence of some low-dimensional semiconductor structures has been investigated under pressure. The measured pressure coefficients of In0.55Al0.45 As/Al0.5Ga0.5As quantum dots with average diameter of 26, 52 and 62 nm are 82, 94 and 98 meV/GPa, respectively. It indicates that these quantum dots are type-I dots. On the other hand, the measured pressure coefficient for quantum dots with 7 nm in size is -17meV/GPa, indicating the type-II character. The measured pressure coefficient for Mn emission in ZnS:Mn nanoparticles is -34.6meV/GPa, in agreement with the predication of the crystal field theory. However, the DA emission is nearly independent on pressure, indicating that this emission is related to the surface defects in ZnS host. The measured pressure coefficient of Cu emission in ZnS: Cu nanoparticles is 63.2 meV/GPa. It implies that the acceptor level introduced by Cu ions has some character of shallow level. The measured pressure coefficient of Eu emission in ZnS:Eu nanoparticles is 24.1 mev/GPa, in contrast to the predication of the crystal field theory. It may be due to the strong interaction between the excited state of Eu ions and the conduction band of ZnS host.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Self-assembled quantum dots and wires were obtained in the InxGa1-xAs/GaAs and InAs/In0.52Al0.48As/lnP systems, respectively, using molecular beam epitaxy (MBE). Uniformity in the distribution, density, and spatial ordering of the nanostructures can be controlled to some extent by adjusting and optimizing the MBE growth parameters. Laser devices and superluminescent diodes were fabricated with InAs/GaAs self-assembled quantum dots as the active region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We employ photoluminescence (PL) and time-resolved PL to study exciton localization effect in InGaN epilayers. By measuring the exciton decay time as a, function of the monitored emission energy at different temperatures, we have found unusual behaviour of the energy dependence in the PL decay process. At low temperature, the measured PL decay time increases with the emission energy. It decreases with the emission energy at 200K, and remains nearly constant at the intermediate temperature of 120K. We have studied the dot size effect on the radiative recombination time by calculating the temperature dependence of the exciton recombination lifetime in quantum dots, and have found that the observed behaviour can be well correlated to the exciton localization in quantum dots. This suggestion is further supported by steady state PL results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The authors calculate the lifetime distribution functions of spontaneous emission from infinite line antennas embedded in two-dimensional disordered photonic crystals with finite size. The calculations indicate the coexistence of both accelerated and inhibited decay processes in disordered photonic crystals with finite size. The decay behavior of the spontaneous emission from infinite line antennas changes significantly by varying factors such as the line antennas' positions in the disordered photonic crystal, the shape of the crystal, the filling fraction, and the dielectric constant. Moreover, the authors analyze the effect of the degree of disorder on spontaneous emission. (c) 2007 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Some differences were observed between conventional molecular-beam epitaxy (MBE) and mobility enhanced epitaxy (MEE) of InAs on a vicinal GaAs(001) substrate in the variation of the number density N of the InAs islands, with additional InAs coverage (theta - theta(c)) after the critical InAs coverage theta(c) during the two- to three-dimensional (2D-3D) transition. For MBE the variation was consistent with the power law N(theta) (theta similar to theta(c))(alpha); while for MEE, the linear relation N(theta) proportional to (theta - theta(c)) was observed. The difference is discussed in terms of the randomness in the nucleation of the InAs islands.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A detailed observation was made using atomic force microscopy on the two- to three-dimensional (2D-3D) growth mode transition in the molecular-beam epitaxy of InAs/GaAs(001). The evolution of the 3D InAs islands during the 2D-3D mode transition was divided into two successive phases. The first phase may be explained in terms of a critical phenomenon of the second-order phase transition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The authors report the self-organized growth of InAs/InAlAs quantum wires on nominal (001) InP substrate and (001) InP substrates misoriented by 2 degrees, 4 degrees, and 8 degrees towards both [-110] and [110]. The influence of substrate misorientation on the structural and optical properties of these InAs/InAlAs quantum wires is studied by transmission electron microscopy and photoluminescence measurements. Compared with that grown on nominal (001) InP substrate, the density of InAs/InAlAs quantum wires grown on misoriented InP(001) substrates is enhanced. A strong lateral composition modulation effect take place in the InAlAs buffer layers grown on misoriented InP substrates with large off-cut angles (4 degrees and 8 degrees), which induces a nucleation template for the first-period InAs quantum wires and greatly improve the size distribution of InAs quantum wires. InAs/InAlAs quantum wires grown on InP (001) substrate 8 degrees off cut towards [-110] show the best size homogeneity and photoluminescence intensity. (c) 2007 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Periodical alignment of the InAs dots along the < 100 > and < 110 > directions was observed on an elastically relaxed InGaAs buffer layer grown at 500 and 450 degrees C, respectively, on the vicinal GaAs(001) substrate. Due to alignment along these directions, the InAs dots were arranged into a quasi-two-dimensional hexagonal lattice. Such a periodical arrangement of InAs dots may be explained in terms of modulation in strain as well as composition along [110] as observed by using cross-sectional transmission electron microscopy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

By a combination of prepatterned substrate and self-organized growth, InAs islands are grown on the stripe-patterned GaAs (100) substrate by solid-source molecular beam epitaxy. It is found that the InAs quantum dots can be formed either on the ridge or on the sidewall of the stripes near the bottom, depending on the structure of the stripes on the patterned substrate or molecular beam epitaxy growth conditions. When a InxGa(1-x)As strained layer is grown first before InAs deposition, almost all the InAs quantum dots are deposited at the edges of the top ridge. And when the InAs deposition amount is larger, a quasi-quantum wire structure is found. The optical properties of the InAs dots on the patterned substrate are also investigated by photoluminescence. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magnetophotoluminescence properties of Zn0.88Mn0.12Se thin films grown by metal-organic chemical vapor deposition on GaAs substrates are investigated in fields up to 10 T. The linewidth of the excitonic luminescence peaks decreases with the increasing magnetic field (< 1 T), but the peak energy is almost unchanged. There is a crossover of the photoluminescence intensities between interband and bound excitonic transitions as the magnetic field is increased to about 1 T. These behaviors are interpreted by the strong tuning of the local alloy disorder potential by the applied magnetic field. In addition, the magnetic field-induced suppression of the energy transfers from excitons to Mn2+ ions is also observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The control of shape and spatial correlation of InAs-InAlAs-InP(001) nanostructure superlattices has been realized by changing the As overpressure during the molecular-beam epitaxy (MBE) growth of InAs layers. InAs quantum wires (QWRs) are obtained under higher As overpressure (1x10(-5) Torr), while elongated InAs quantum dots (QDs) are formed under lower As overpressure (5x10(-6) or 2.5x10(-6) Torr). Correspondingly, spatial correlation changes from vertical anti-correlation in QWR superlattices to vertical correlation in QD superlattices, which is well explained by the different alloy phase separation in InAlAs spacer layers triggered by the InAs nanostrcutures. It was observed that the alloy phase separation in QD superlattices could extend a long distance along the growth direction, indicating the vertical correlation of QD superlattices can be kept in a wide range of spacer layer thickness.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

By combination of prepatterned substrate and self-organized growth, InAs islands are grown on the stripe-patterned GaAs (100) substrate by solid soul-cc molecular beam epitaxy. Four [011] stripe-patterned substrates different in pitch, depth, and sidewall angle, respectively, are used in this work. The surface morphology obtained by atomic force microscopy shows that the InAs quantum dots can be formed either on the ridge or on the sidewall of the stripes near the bottom, depending on the structure of the stripes on the patterned substrate. The mechanism determining the nucleation position of the InAs dots is discussed. The optical properties of the InAs dots on the patterned substrates are also investigated by photo luminescence. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interband and intraband photocurrent properties of InAs/InAlAs/InP nanostructures have been studied. The doping effect on the photoluminescence properties of the quantum dots and the anisotropy of the quantum wire interband photocurrent properties are presented and discussed. With the help of interband excitation, an intraband photocurrent signal of the InAs nanostructures is observed. With the increase of the interband excitation power, the intraband photocurrent signal first increases and then decreases, which can be explained by the variance of the ground state occupation of the InAs nanostructures and the change of the mobility and lifetime of the electrons. The temperature dependence of the intraband photocurrent signal of the InAs nanostructures is also investigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have studied the growth and optical properties of AlInGaN alloys in this article. By the measurement of three samples, we found that the incorporation of In decreases with the increase of temperature, while there is nearly no change for the incorporation of Al. The sample grown at the lowest temperature had the best material and optical properties, which owes to the high In component, because the In component can reduce defects and improve the material quality. We also used the time-resolved photoluminescence(PL) to study the mechanism of recombination of carriers, and found that the time dependence of PL intensity was not in exponential decay, but in stretched-exponential decay. Through the study of the character of this decay, we come to the conclusion that the emission comes from the recombination of localized excitons. Once more, this localization exhibites the character of quantum dots, and the stretched, exponential decay results from the hopping of carriers between different localized states. In addition, we have used the relation of emission energy dependence of carrier's lifetime and the character of radiative recombination and non-radiative combination to confirm our conclusion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the two samples of AIInGaN, i.e., 1-mum GaN grown at 1030degreesC on the buffer and followed by a 0.6-mum-thick epilayer of AIInGaN under the low pressure of 76 Torr and the AIInGaN layer deposited directly on the buffer layer without the high-temperature GaN layer, by temperature-dependent photoluminescence (PL) spectroscopy and picosecond time-resolved photoluminescence (TRPL) spectroscopy. The TRPL signals of both the samples were fitted well as a stretched exponential decay at all temperatures, indicating significant disorder in the material. We attribute the disorder to nanoscale quantum dots or discs of high indium concentration. Temperature dependence of dispersive exponent beta shows that the stretched exponential decay of the two samples comes from different mechanisms. The different depths of the localization potential account for the difference, which is illustrated by the results of temperature dependence of radiative recombination lifetime and PL peak energy.