751 resultados para science, study and teaching
Resumo:
Acompanha: A educação de jovens e adultos e o ensino de ciências naturais: contribuições da utilização dos conceitos unificadores
Resumo:
Acompanha: Manual didático: o emprego de aspectos sociocientíficos no ensino de química
Resumo:
Concerns raised in educational reports about school science in terms of students. outcomes and attitudes, as well as science teaching practices prompted investigation into science learning and teaching practices at the foundational level of school science. Without science content and process knowledge, understanding issues of modern society and active participation in decision-making is difficult. This study contended that a focus on the development of the language of science could enable learners to engage more effectively in learning science and enhance their interest and attitudes towards science. Furthermore, it argued that explicit teaching practices where science language is modelled and scaffolded would facilitate the learning of science by young children at the beginning of their formal schooling. This study aimed to investigate science language development at the foundational level of school science learning in the preparatory-school with students aged five and six years. It focussed on the language of science and science teaching practices in early childhood. In particular, the study focussed on the capacity for young students to engage with and understand science language. Previous research suggests that students have difficulty with the language of science most likely because of the complexities and ambiguities of science language. Furthermore, literature indicates that tensions transpire between traditional science teaching practices and accepted early childhood teaching practices. This contention prompted investigation into means and models of pedagogy for learning foundational science language, knowledge and processes in early childhood. This study was positioned within qualitative assumptions of research and reported via descriptive case study. It was located in a preparatory-school classroom with the class teacher, teacher-aide, and nineteen students aged four and five years who participated with the researcher in the study. Basil Bernstein.s pedagogical theory coupled with Halliday.s Systemic Functional Linguistics (SFL) framed an examination of science pedagogical practices for early childhood science learning. Students. science learning outcomes were gauged by focussing a Hallydayan lens on their oral and reflective language during 12 science-focussed episodes of teaching. Data were collected throughout the 12 episodes. Data included video and audio-taped science activities, student artefacts, journal and anecdotal records, semi-structured interviews and photographs. Data were analysed according to Bernstein.s visible and invisible pedagogies and performance and competence models. Additionally, Halliday.s SFL provided the resource to examine teacher and student language to determine teacher/student interpersonal relationships as well as specialised science and everyday language used in teacher and student science talk. Their analysis established the socio-linguistic characteristics that promoted science competencies in young children. An analysis of the data identified those teaching practices that facilitate young children.s acquisition of science meanings. Positive indications for modelling science language and science text types to young children have emerged. Teaching within the studied setting diverged from perceived notions of common early childhood practices and the benefits of dynamic shifting pedagogies were validated. Significantly, young students demonstrated use of particular specialised components of school-science language in terms of science language features and vocabulary. As well, their use of language demonstrated the students. knowledge of science concepts, processes and text types. The young students made sense of science phenomena through their incorporation of a variety of science language and text-types in explanations during both teacher-directed and independent situations. The study informs early childhood science practices as well as practices for foundational school science teaching and learning. It has exposed implications for science education policy, curriculum and practices. It supports other findings in relation to the capabilities of young students. The study contributes to Systemic Functional Linguistic theory through the development of a specific resource to determine the technicality of teacher language used in teaching young students. Furthermore, the study contributes to methodology practices relating to Bernsteinian theoretical perspectives and has demonstrated new ways of depicting and reporting teaching practices. It provides an analytical tool which couples Bernsteinian and Hallidayan theoretical perspectives. Ultimately, it defines directions for further research in terms of foundation science language learning, ongoing learning of the language of science and learning science, science teaching and learning practices, specifically in foundational school science, and relationships between home and school science language experiences.
Resumo:
Despite optimistic claims about the research-teaching nexus, Australian academics still face tension between research and teaching. The teaching and research priorities, beliefs and behaviours of 70 Professorial and Associate Professorial academics in Science, Information Technology and Engineering were examined in this study. The academics from 4 faculties in 3 Australian universities, were asked to rank 16 research activities and 16 matched learning and teaching (L&T) activities from each of three perspectives: job satisfaction, leadership behaviour, and perceptions of professional importance. The findings, which were remarkably consistent across the three universities, were unequivocally in favour of Research. The only L&T activity that was ranked consistently well was “Improving student satisfaction ratings for Teaching”. The data demonstrates that Australian government and university initiatives to raise the status of L&T activity are not impacting significantly on Australia’s future leaders of university learning.
Resumo:
This paper presents findings from an empirical study of key aspects of the teaching and research priorities, beliefs and behaviours of 72 professorial and associate professorial academics in Science, Information Technology and Engineering across four faculties in three Australian universities. The academics ranked 16 research activities and 16 matched learning and teaching (L&T) activities from three perspectives: job satisfaction, role model behaviour and perceptions of professional importance. The findings were unequivocally in favour of research in all three areas and remarkably consistent across the universities. The only L&T activity that was ranked consistently well was 'improving student satisfaction ratings for teaching', an area in which academics are increasingly held accountable. Respondents also indicated that their seniors encourage research efforts more than L&T efforts. Recommendations include that higher education rewards for quality L&T are maintained or improved and that recognition of L&T research domains is further strengthened.
Resumo:
This thesis investigated how a year-4 teacher used a pedagogical approach referred to as the Gradual Release of Responsibility (GRR) model of instruction for teaching Science Inquiry Skills in a primary classroom. Through scaffolding her students' learning using the GRR, the teacher guided her students towards developing an understanding about Scientific Inquiry leading to the foundations of scientific literacy. A learning environment was established in which students engaged in rich conversations, designed and conducted experiments using fair testing procedures, analysed and offered justifications for results, and negotiated knowledge claims in ways similar to some of those in the scientific community.
Resumo:
The study investigated early years teachers’ understanding and use of graphic symbols, defined as the visual representation(s) used to communicate one or more “linguistic” concepts, which can be used to facilitate science learning. The study was conducted in Cyprus where six early years teachers were observed and interviewed. The results indicate that the teachers had a good understanding of the role of symbols, but demonstrated a lack of understanding in regards to graphic symbols specifically. None of the teachers employed them in their observed science lesson, although some of them claimed that they did so. Findings suggest a gap in participants’ acquaintance with the terminology regarding different types of symbols and a lack of awareness about the use and availability of graphic symbols for the support of learning. There is a need to inform and train early years teachers about graphic symbols and their potential applications in supporting children’s learning.
Resumo:
This study intended to measure teacher mathematical content knowledge both before and after the first year of teaching and taking graduate teacher education courses in the Teach for America (TFA) program, as well as measure attitudes toward mathematics and teaching both before and after TFA teachers’ first year. There was a significant increase in both mathematical content knowledge and attitudes toward mathematics over the TFA teachers’ first year teaching. Additionally, several significant correlations were found between attitudes toward mathematics and content knowledge. Finally, after a year of teaching, TFA teachers had significantly better attitudes toward mathematics and teaching than neutral.
Resumo:
Standardization is critical to scientists and regulators to ensure the quality and interoperability of research processes, as well as the safety and efficacy of the attendant research products. This is perhaps most evident in the case of “omics science,” which is enabled by a host of diverse high-throughput technologies such as genomics, proteomics, and metabolomics. But standards are of interest to (and shaped by) others far beyond the immediate realm of individual scientists, laboratories, scientific consortia, or governments that develop, apply, and regulate them. Indeed, scientific standards have consequences for the social, ethical, and legal environment in which innovative technologies are regulated, and thereby command the attention of policy makers and citizens. This article argues that standardization of omics science is both technical and social. A critical synthesis of the social science literature indicates that: (1) standardization requires a degree of flexibility to be practical at the level of scientific practice in disparate sites; (2) the manner in which standards are created, and by whom, will impact their perceived legitimacy and therefore their potential to be used; and (3) the process of standardization itself is important to establishing the legitimacy of an area of scientific research.
Resumo:
Curriculum demands continue to increase on school education systems with teachers at the forefront of implementing syllabus requirements. Education is reported frequently as a solution to most societal problems and, as a result of the world’s information explosion, teachers are expected to cover more and more within teaching programs. How can teachers combine subjects in order to capitalise on the competing educational agendas within school timeframes? Fusing curricula requires the bonding of standards from two or more syllabuses. Both technology and ICT complement the learning of science. This study analyses selected examples of preservice teachers’ overviews for fusing science, technology and ICT. These program overviews focused on primary students and the achievement of two standards (one from science and one from either technology or ICT). These primary preservice teachers’ fused-curricula overviews included scientific concepts and related technology and/or ICT skills and knowledge. Findings indicated a range of innovative curriculum plans for teaching primary science through technology and ICT, demonstrating that these subjects can form cohesive links towards achieving the respective learning standards. Teachers can work more astutely by fusing curricula; however further professional development may be required to advance thinking about these processes. Bonding subjects through their learning standards can extend beyond previous integration or thematic work where standards may not have been assessed. Education systems need to articulate through syllabus documents how effective fusing of curricula can be achieved. It appears that education is a key avenue for addressing societal needs, problems and issues. Education is promoted as a universal solution, which has resulted in curriculum overload (Dare, Durand, Moeller, & Washington, 1997; Vinson, 2001). Societal and curriculum demands have placed added pressure on teachers with many extenuating education issues increasing teachers’ workloads (Mobilise for Public Education, 2002). For example, as Australia has weather conducive for outdoor activities, social problems and issues arise that are reported through the media calling for action; consequently schools have been involved in swimming programs, road and bicycle safety programs, and a wide range of activities that had been considered a parental responsibility in the past. Teachers are expected to plan, implement and assess these extra-curricula activities within their already overcrowded timetables. At the same stage, key learning areas (KLAs) such as science and technology are mandatory requirements within all Australian education systems. These systems have syllabuses outlining levels of content and the anticipated learning outcomes (also known as standards, essential learnings, and frameworks). Time allocated for teaching science in obviously an issue. In 2001, it was estimated that on average the time spent in teaching science in Australian Primary Schools was almost an hour per week (Goodrum, Hackling, & Rennie, 2001). More recently, a study undertaken in the U.S. reported a similar finding. More than 80% of the teachers in K-5 classrooms spent less than an hour teaching science (Dorph, Goldstein, Lee, et al., 2007). More importantly, 16% did not spend teaching science in their classrooms. Teachers need to learn to work smarter by optimising the use of their in-class time. Integration is proposed as one of the ways to address the issue of curriculum overload (Venville & Dawson, 2005; Vogler, 2003). Even though there may be a lack of definition for integration (Hurley, 2001), curriculum integration aims at covering key concepts in two or more subject areas within the same lesson (Buxton & Whatley, 2002). This implies covering the curriculum in less time than if the subjects were taught separately; therefore teachers should have more time to cover other educational issues. Expectedly, the reality can be decidedly different (e.g., Brophy & Alleman, 1991; Venville & Dawson, 2005). Nevertheless, teachers report that students expand their knowledge and skills as a result of subject integration (James, Lamb, Householder, & Bailey, 2000). There seems to be considerable value for integrating science with other KLAs besides aiming to address teaching workloads. Over two decades ago, Cohen and Staley (1982) claimed that integration can bring a subject into the primary curriculum that may be otherwise left out. Integrating science education aims to develop a more holistic perspective. Indeed, life is not neat components of stand-alone subjects; life integrates subject content in numerous ways, and curriculum integration can assist students to make these real-life connections (Burnett & Wichman, 1997). Science integration can provide the scope for real-life learning and the possibility of targeting students’ learning styles more effectively by providing more than one perspective (Hudson & Hudson, 2001). To illustrate, technology is essential to science education (Blueford & Rosenbloom, 2003; Board of Studies, 1999; Penick, 2002), and constructing technology immediately evokes a social purpose for such construction (Marker, 1992). For example, building a model windmill requires science and technology (Zubrowski, 2002) but has a key focus on sustainability and the social sciences. Science has the potential to be integrated with all KLAs (e.g., Cohen & Staley, 1982; Dobbs, 1995; James et al., 2000). Yet, “integration” appears to be a confusing term. Integration has an educational meaning focused on special education students being assimilated into mainstream classrooms. The word integration was used in the late seventies and generally focused around thematic approaches for teaching. For instance, a science theme about flight only has to have a student drawing a picture of plane to show integration; it did not connect the anticipated outcomes from science and art. The term “fusing curricula” presents a seamless bonding between two subjects; hence standards (or outcomes) need to be linked from both subjects. This also goes beyond just embedding one subject within another. Embedding implies that one subject is dominant, while fusing curricula proposes an equal mix of learning within both subject areas. Primary education in Queensland has eight KLAs, each with its established content and each with a proposed structure for levels of learning. Primary teachers attempt to cover these syllabus requirements across the eight KLAs in less than five hours a day, and between many of the extra-curricula activities occurring throughout a school year (e.g., Easter activities, Education Week, concerts, excursions, performances). In Australia, education systems have developed standards for all KLAs (e.g., Education Queensland, NSW Department of Education and Training, Victorian Education) usually designated by a code. In the late 1990’s (in Queensland), “core learning outcomes” for strands across all KLA’s. For example, LL2.1 for the Queensland Education science syllabus means Life and Living at Level 2 standard number 1. Thus, a teacher’s planning requires the inclusion of standards as indicated by the presiding syllabus. More recently, the core learning outcomes were replaced by “essential learnings”. They specify “what students should be taught and what is important for students to have opportunities to know, understand and be able to do” (Queensland Studies Authority, 2009, para. 1). Fusing science education with other KLAs may facilitate more efficient use of time and resources; however this type of planning needs to combine standards from two syllabuses. To further assist in facilitating sound pedagogical practices, there are models proposed for learning science, technology and other KLAs such as Bloom’s Taxonomy (Bloom, 1956), Productive Pedagogies (Education Queensland, 2004), de Bono’s Six Hats (de Bono, 1985), and Gardner’s Multiple Intelligences (Gardner, 1999) that imply, warrant, or necessitate fused curricula. Bybee’s 5 Es, for example, has five levels of learning (engage, explore, explain, elaborate, and evaluate; Bybee, 1997) can have the potential for fusing science and ICT standards.
Resumo:
In this chapter, we describe and explore social relationship patterns associated with outstanding innovation. In doing so, we draw upon the findings of 16 in-depth interviews with award-winning Australian innovators from science & technology and the creative industries. The interviews covered topics relating to various influences on individual innovation capacity and career development. We found that for all of the participants, innovation was a highly social process. Although each had been recognised individually for their innovative success, none worked in isolation. The ability to generate innovative outcomes was grounded in certain types of interaction and collaboration. We outline the distinctive features of the social relationships which seem to be important to innovation, and ask which ‘social network capabilities’ might underlie the ability to create an optimal pattern of interpersonal relationships. We discuss the implications of these findings for universities, which we argue play a key role in the development of nascent innovators.