755 resultados para hyperbolic tangent


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine differential equations where nonlinearity is a result of the advection part of the total derivative or the use of quadratic algebraic constraints between state variables (such as the ideal gas law). We show that these types of nonlinearity can be accounted for in the tangent linear model by a suitable choice of the linearization trajectory. Using this optimal linearization trajectory, we show that the tangent linear model can be used to reproduce the exact nonlinear error growth of perturbations for more than 200 days in a quasi-geostrophic model and more than (the equivalent of) 150 days in the Lorenz 96 model. We introduce an iterative method, purely based on tangent linear integrations, that converges to this optimal linearization trajectory. The main conclusion from this article is that this iterative method can be used to account for nonlinearity in estimation problems without using the nonlinear model. We demonstrate this by performing forecast sensitivity experiments in the Lorenz 96 model and show that we are able to estimate analysis increments that improve the two-day forecast using only four backward integrations with the tangent linear model. Copyright © 2011 Royal Meteorological Society

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we construct reliable a posteriori estimates for some semi- (spatially) discrete discontinuous Galerkin schemes applied to nonlinear systems of hyperbolic conservation laws. We make use of appropriate reconstructions of the discrete solution together with the relative entropy stability framework, which leads to error control in the case of smooth solutions. The methodology we use is quite general and allows for a posteriori control of discontinuous Galerkin schemes with standard flux choices which appear in the approximation of conservation laws. In addition to the analysis, we conduct some numerical benchmarking to test the robustness of the resultant estimator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This contribution is concerned with aposteriori error analysis of discontinuous Galerkin (dG) schemes approximating hyperbolic conservation laws. In the scalar case the aposteriori analysis is based on the L1 contraction property and the doubling of variables technique. In the system case the appropriate stability framework is in L2, based on relative entropies. It is only applicable if one of the solutions, which are compared to each other, is Lipschitz. For dG schemes approximating hyperbolic conservation laws neither the entropy solution nor the numerical solution need to be Lipschitz. We explain how this obstacle can be overcome using a reconstruction approach which leads to an aposteriori error estimate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the horospherical geometry of submanifolds in hyperbolic space. The main result is a formula for the total absolute horospherical curvature of M, which implies, for the horospherical geometry, the analogues of classical inequalities of the Euclidean Geometry. We prove the horospherical Chern-Lashof inequality for surfaces in 3-space and the horospherical Fenchel and Fary-Milnor`s theorems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study horo-tight immersions of manifolds into hyperbolic spaces. The main result gives several characterizations of horo-tightness of spheres, answering a question proposed by Cecil and Ryan. For instance, we prove that a sphere is horo-tight if and only if it is tight in the hyperbolic sense. For codimension bigger than one, it follows that horo-tight spheres in hyperbolic space are metric spheres. We also prove that horo-tight hyperspheres are characterized by the property that both of its total absolute horospherical curvatures attend their minimum value. We also introduce the notion of weak horo-tightness: an immersion is weak horo-tight if only one of its total absolute curvature attends its minimum. We prove a characterization theorem for weak horo-tight hyperspheres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We classify the quadratic extensions K = Q[root d] and the finite groups G for which the group ring o(K)[G] of G over the ring o(K) of integers of K has the property that the group U(1)(o(K)[G]) of units of augmentation 1 is hyperbolic. We also construct units in the Z-order H(o(K)) of the quaternion algebra H(K) = (-1, -1/K), when it is a division algebra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following the lines of the celebrated Riemannian result of Gromoll and Meyer, we use infinite dimensional equivariant Morse theory to establish the existence of infinitely many geometrically distinct closed geodesics in a class of globally hyperbolic stationary Lorentzian manifolds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given an oriented Riemannian surface (Sigma, g), its tangent bundle T Sigma enjoys a natural pseudo-Kahler structure, that is the combination of a complex structure 2, a pseudo-metric G with neutral signature and a symplectic structure Omega. We give a local classification of those surfaces of T Sigma which are both Lagrangian with respect to Omega and minimal with respect to G. We first show that if g is non-flat, the only such surfaces are affine normal bundles over geodesics. In the flat case there is, in contrast, a large set of Lagrangian minimal surfaces, which is described explicitly. As an application, we show that motions of surfaces in R(3) or R(1)(3) induce Hamiltonian motions of their normal congruences, which are Lagrangian surfaces in TS(2) or TH(2) respectively. We relate the area of the congruence to a second-order functional F = f root H(2) - K dA on the original surface. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the isoperimetric problem of finding the regions of prescribed volume with minimal boundary area between two parallel horospheres in hyperbolic 3-space (the part of the boundary contained in the horospheres is not included). We reduce the problem to the study of rotationally invariant regions and obtain the possible isoperimetric solutions by studying the behavior of the profile curves of the rotational surfaces with constant mean curvature in hyperbolic 3-space. We also classify all the connected compact rotational surfaces M of constant mean curvature that are contained in the region between two horospheres, have boundary partial derivative M either empty or lying on the horospheres, and meet the horospheres perpendicularly along their boundary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of neutral fermions subject to a pseudoscalar potential is investigated. Apart from the solutions for E = +/- mc(2), the problem is mapped into the Sturm-Liouville equation. The case of a singular trigonometric tangent potential (similar to tan gamma x) is exactly solved and the complete set of solutions is discussed in some detail. It is revealed that this intrinsically relativistic and true confining potential is able to localize fermions into a region of space arbitrarily small without the menace of particle-antiparticle production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new version of the relaxation algorithm is proposed in order to obtain the stationary ground-state solutions of nonlinear Schrodinger-type equations, including the hyperbolic solutions. In a first example, the method is applied to the three-dimensional Gross-Pitaevskii equation, describing a condensed atomic system with attractive two-body interaction in a non-symmetrical trap, to obtain results for the unstable branch. Next, the approach is also shown to be very reliable and easy to be implemented in a non-symmetrical case that we have bifurcation, with nonlinear cubic and quintic terms. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A few years ago, Cornish, Spergel and Starkman (CSS) suggested that a multiply connected small universe could allow for classical chaotic mixing as a preinflationary homogenization process. The smaller the volume, the more important the process. Also, a smaller universe has a greater probability of being spontaneously created. Previously DeWitt, Hart and Isham (DHI) calculated the Casimir energy for static multiply connected fat space-times. Because of the interest in small volume hyperbolic universes (e.g., CSS), we generalize the DHI calculation by making a numerical investigation of the Casimir energy for a conformally coupled, massive scalar field in a static universe, whose spatial sections are the Weeks manifold, the smallest universe of negative curvature known. In spite of being a numerical calculation, our result is in fact exact. It is shown that there is spontaneous vacuum excitation of low multipolar components.