898 resultados para finite impulse response (FIR) digital filters
Resumo:
International audience
Resumo:
Conventional hardware implementation techniques for FIR filters require the computation of filter coefficients in software and have them stored in memory. This approach is static in the sense that any further fine tuning of the filter requires computation of new coefficients in software. In this paper, we propose an alternate technique for implementing FIR filters in hardware. We store a considerably large number of impulse response coefficients of the ideal filter (having box type frequency response) in memory. We then do the windowing process, on these coefficients, in hardware using integer sequences as window functions. The integer sequences are also generated in hardware. This approach offers the flexibility in fine tuning the filter, like varying the transition bandwidth around a particular cutoff frequency.
Resumo:
This paper describes a novel mimetic technique of using frequency domain approach and digital filters for automatic generation of EEG reports. Digitized EEG data files, transported on a cartridge, have been used for the analysis. The signals are filtered for alpha, beta, theta and delta bands with digital bandpass filters of fourth-order, cascaded, Butterworth, infinite impulse response (IIR) type. The maximum amplitude, mean frequency, continuity index and degree of asymmetry have been computed for a given EEG frequency band. Finally, searches for the presence of artifacts (eye movement or muscle artifacts) in the EEG records have been made.
Resumo:
This paper presents a spectral finite element formulation for uniform and tapered rotating CNT embedded polymer composite beams. The exact solution to the governing differential equation of a rotating Euler-Bernoulli beam with maximum centrifugal force is used as an interpolating function for the spectral element formulation. Free vibration and wave propagation analysis is carried out using the formulated spectral element. The present study shows the substantial effect of volume fraction and L/D ratio of CNTs in a beam on the natural frequency, impulse response and wave propagation characteristics of the rotating beam. It is found that the CNTs embedded in the matrix can make the rotating beam non-dispersive in nature at higher rotation speeds. Embedded CNTs can significantly alter the dynamics of polymer-nanocomposite beams. The results are also compared with those obtained for carbon fiber reinforced laminated composite rotating beams. It is observed that CNT reinforced rotating beams are superior in performance compared to laminated composite rotating beams. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
O presente trabalho apresenta um estudo referente à aplicação da abordagem Bayesiana como técnica de solução do problema inverso de identificação de danos estruturais, onde a integridade da estrutura é continuamente descrita por um parâmetro estrutural denominado parâmetro de coesão. A estrutura escolhida para análise é uma viga simplesmente apoiada do tipo Euler-Bernoulli. A identificação de danos é baseada em alterações na resposta impulsiva da estrutura, provocadas pela presença dos mesmos. O problema direto é resolvido através do Método de Elementos Finitos (MEF), que, por sua vez, é parametrizado pelo parâmetro de coesão da estrutura. O problema de identificação de danos é formulado como um problema inverso, cuja solução, do ponto de vista Bayesiano, é uma distribuição de probabilidade a posteriori para cada parâmetro de coesão da estrutura, obtida utilizando-se a metodologia de amostragem de Monte Carlo com Cadeia de Markov. As incertezas inerentes aos dados medidos serão contempladas na função de verossimilhança. Três estratégias de solução são apresentadas. Na Estratégia 1, os parâmetros de coesão da estrutura são amostrados de funções densidade de probabilidade a posteriori que possuem o mesmo desvio padrão. Na Estratégia 2, após uma análise prévia do processo de identificação de danos, determina-se regiões da viga potencialmente danificadas e os parâmetros de coesão associados à essas regiões são amostrados a partir de funções de densidade de probabilidade a posteriori que possuem desvios diferenciados. Na Estratégia 3, após uma análise prévia do processo de identificação de danos, apenas os parâmetros associados às regiões identificadas como potencialmente danificadas são atualizados. Um conjunto de resultados numéricos é apresentado levando-se em consideração diferentes níveis de ruído para as três estratégias de solução apresentadas.
Resumo:
O presente trabalho aborda o problema de identificação de danos em uma estrutura a partir de sua resposta impulsiva. No modelo adotado, a integridade estrutural é continuamente descrita por um parâmetro de coesão. Sendo assim, o Modelo de Elementos Finitos (MEF) é utilizado para discretizar tanto o campo de deslocamentos, quanto o campo de coesão. O problema de identificação de danos é, então, definido como um problema de otimização, cujo objetivo é minimizar, em relação a um vetor de parâmetros nodais de coesão, um funcional definido a partir da diferença entre a resposta impulsiva experimental e a correspondente resposta prevista por um MEF da estrutura. A identificação de danos estruturais baseadas no domínio do tempo apresenta como vantagens a aplicabilidade em sistemas lineares e/ou com elevados níveis de amortecimento, além de apresentar uma elevada sensibilidade à presença de pequenos danos. Estudos numéricos foram realizados considerando-se um modelo de viga de Euler-Bernoulli simplesmente apoiada. Para a determinação do posicionamento ótimo do sensor de deslocamento e do número de pontos da resposta impulsiva, a serem utilizados no processo de identificação de danos, foi considerado o Projeto Ótimo de Experimentos. A posição do sensor e o número de pontos foram determinados segundo o critério D-ótimo. Outros critérios complementares foram também analisados. Uma análise da sensibilidade foi realizada com o intuito de identificar as regiões da estrutura onde a resposta é mais sensível à presença de um dano em um estágio inicial. Para a resolução do problema inverso de identificação de danos foram considerados os métodos de otimização Evolução Diferencial e Levenberg-Marquardt. Simulações numéricas, considerando-se dados corrompidos com ruído aditivo, foram realizadas com o intuito de avaliar a potencialidade da metodologia de identificação de danos, assim como a influência da posição do sensor e do número de dados considerados no processo de identificação. Com os resultados obtidos, percebe-se que o Projeto Ótimo de Experimentos é de fundamental importância para a identificação de danos.
Resumo:
Nesta Dissertação propõe-se a aplicação de algoritmos genéticos para a síntese de filtros para modular sinais de controladores a estrutura variável e modo deslizante. A modulação do sinal de controle reduz a amplitude do sinal de saída e, consequentemente, pode reduzir o consumo de energia para realizar o controle e o chattering. Esses filtros também são aplicados em sistemas que possuem incertezas paramétricas nos quais nem todas as variáveis de estado são medidas. Nesses sistemas, as incertezas nos parâmetros podem impedir que seus estados sejam estimados com precisão por observadores. A síntese desses filtros necessita da obtenção da envoltória, que é o valor máximo da norma de cada resposta impulsiva admissível no sistema. Após este passo, é sintetizado um filtro que seja um majorante para a envoltória. Neste estudo, três métodos de busca da envoltória por algoritmos genéticos foram criados. Um dos métodos é o preferido, pois apresentou os melhores resultados e o menor tempo computacional.
Resumo:
The initial part of this paper reviews the early challenges (c 1980) in achieving real-time silicon implementations of DSP computations. In particular, it discusses research on application specific architectures, including bit level systolic circuits that led to important advances in achieving the DSP performance levels then required. These were many orders of magnitude greater than those achievable using programmable (including early DSP) processors, and were demonstrated through the design of commercial digital correlator and digital filter chips. As is discussed, an important challenge was the application of these concepts to recursive computations as occur, for example, in Infinite Impulse Response (IIR) filters. An important breakthrough was to show how fine grained pipelining can be used if arithmetic is performed most significant bit (msb) first. This can be achieved using redundant number systems, including carry-save arithmetic. This research and its practical benefits were again demonstrated through a number of novel IIR filter chip designs which at the time, exhibited performance much greater than previous solutions. The architectural insights gained coupled with the regular nature of many DSP and video processing computations also provided the foundation for new methods for the rapid design and synthesis of complex DSP System-on-Chip (SoC), Intellectual Property (IP) cores. This included the creation of a wide portfolio of commercial SoC video compression cores (MPEG2, MPEG4, H.264) for very high performance applications ranging from cell phones to High Definition TV (HDTV). The work provided the foundation for systematic methodologies, tools and design flows including high-level design optimizations based on "algorithmic engineering" and also led to the creation of the Abhainn tool environment for the design of complex heterogeneous DSP platforms comprising processors and multiple FPGAs. The paper concludes with a discussion of the problems faced by designers in developing complex DSP systems using current SoC technology. © 2007 Springer Science+Business Media, LLC.
Resumo:
A novel bit level systolic array is presented that can be used as a building block in the construction of recursive digital filters. The circuit accepts bit-parallel input data, is pipelined at the bit level, and exhibits a very high throughput rate. The most important feature of the circuit is that it allows recursive operations to be implemented directly without incurring the large m cycle latency (where m is approximately the word length) normally associated with such systems. The use of this circuit in the construction of both first- and second-order IIR (infinite-impulse-response) filters is described.
Resumo:
The design of a high-performance IIR (infinite impulse response) digital filter is described. The chip architecture operates on 11-b parallel, two's complement input data with a 12-b parallel two's complement coefficient to produce a 14-b two's complement output. The chip is implemented in 1.5-µm, double-layer-metal CMOS technology, consumes 0.5 W, and can operate up to 15 Msample/s. The main component of the system is a fine-grained systolic array that internally is based on a signed binary number representation (SBNR). Issues addressed include testing, clock distribution, and circuitry for conversion between two's complement and SBNR.
Resumo:
With the outlook of improving seismic vulnerability assessment for the city of Bishkek (Kyrgyzstan), the global dynamic behaviour of four nine-storey r.c. large-panel buildings in elastic regime is studied. The four buildings were built during the Soviet era within a serial production system. Since they all belong to the same series, they have very similar geometries both in plan and in height. Firstly, ambient vibration measurements are performed in the four buildings. The data analysis composed of discrete Fourier transform, modal analysis (frequency domain decomposition) and deconvolution interferometry, yields the modal characteristics and an estimate of the linear impulse response function for the structures of the four buildings. Then, finite element models are set up for all four buildings and the results of the numerical modal analysis are compared with the experimental ones. The numerical models are finally calibrated considering the first three global modes and their results match the experimental ones with an error of less then 20%.
Resumo:
Long-term electrocardiogram (ECG) often suffers from relevant noise. Baseline wander in particular is pronounced in ECG recordings using dry or esophageal electrodes, which are dedicated for prolonged registration. While analog high-pass filters introduce phase distortions, reliable offline filtering of the baseline wander implies a computational burden that has to be put in relation to the increase in signal-to-baseline ratio (SBR). Here we present a graphics processor unit (GPU) based parallelization method to speed up offline baseline wander filter algorithms, namely the wavelet, finite, and infinite impulse response, moving mean, and moving median filter. Individual filter parameters were optimized with respect to the SBR increase based on ECGs from the Physionet database superimposed to auto-regressive modeled, real baseline wander. A Monte-Carlo simulation showed that for low input SBR the moving median filter outperforms any other method but negatively affects ECG wave detection. In contrast, the infinite impulse response filter is preferred in case of high input SBR. However, the parallelized wavelet filter is processed 500 and 4 times faster than these two algorithms on the GPU, respectively, and offers superior baseline wander suppression in low SBR situations. Using a signal segment of 64 mega samples that is filtered as entire unit, wavelet filtering of a 7-day high-resolution ECG is computed within less than 3 seconds. Taking the high filtering speed into account, the GPU wavelet filter is the most efficient method to remove baseline wander present in long-term ECGs, with which computational burden can be strongly reduced.
Resumo:
Objective: To use the over-complete discrete wavelet transform (OCDWT) to further examine the dual structure of auditory brainstem response (ABR) in the dog. Methods: ABR waveforms recorded from 20 adult dogs at supra-threshold (90 and 70 dBnHL) and threshold (0-15 dBSL) levels were decomposed using a six level OCDWT and reconstructed at individual scales (frequency ranges) A6 (0-391 Hz), D6 (391-781 Hz), and D5 (781-1563 Hz). Results: At supra-threshold stimulus levels, the A6 scale (0-391 Hz) showed a large amplitude waveform with its prominent wave corresponding in latency with ABR waves II/III; the D6 scale (391-781 Hz) showed a small amplitude waveform with its first four waves corresponding in latency to ABR waves I, II/III, V, and VI; and the D5 scale (781-1563 Hz) showed a large amplitude, multiple peaked waveform with its first six waves corresponding in latency to ABR waves I, II, III, IV, V, and VI. At threshold stimulus levels (0-15 dBSL), the A6 scale (0-391 Hz) continued to show a relatively large amplitude waveform, but both the D6 and D5 scales (391781 and 781-1563 Hz, respectively) now showed relatively small amplitude waveforms. Conclusions: A dual structure exists within the ABR of the dog, but its relative structure changes with stimulus level. Significance: The ABR in the dog differs from that in the human both in the relative contributions made by its different frequency components, and the way these components change with stimulus level. (c) 2006 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
Signal Processing (SP) is a subject of central importance in engineering and the applied sciences. Signals are information-bearing functions, and SP deals with the analysis and processing of signals (by dedicated systems) to extract or modify information. Signal processing is necessary because signals normally contain information that is not readily usable or understandable, or which might be disturbed by unwanted sources such as noise. Although many signals are non-electrical, it is common to convert them into electrical signals for processing. Most natural signals (such as acoustic and biomedical signals) are continuous functions of time, with these signals being referred to as analog signals. Prior to the onset of digital computers, Analog Signal Processing (ASP) and analog systems were the only tool to deal with analog signals. Although ASP and analog systems are still widely used, Digital Signal Processing (DSP) and digital systems are attracting more attention, due in large part to the significant advantages of digital systems over the analog counterparts. These advantages include superiority in performance,s peed, reliability, efficiency of storage, size and cost. In addition, DSP can solve problems that cannot be solved using ASP, like the spectral analysis of multicomonent signals, adaptive filtering, and operations at very low frequencies. Following the recent developments in engineering which occurred in the 1980's and 1990's, DSP became one of the world's fastest growing industries. Since that time DSP has not only impacted on traditional areas of electrical engineering, but has had far reaching effects on other domains that deal with information such as economics, meteorology, seismology, bioengineering, oceanology, communications, astronomy, radar engineering, control engineering and various other applications. This book is based on the Lecture Notes of Associate Professor Zahir M. Hussain at RMIT University (Melbourne, 2001-2009), the research of Dr. Amin Z. Sadik (at QUT & RMIT, 2005-2008), and the Note of Professor Peter O'Shea at Queensland University of Technology. Part I of the book addresses the representation of analog and digital signals and systems in the time domain and in the frequency domain. The core topics covered are convolution, transforms (Fourier, Laplace, Z. Discrete-time Fourier, and Discrete Fourier), filters, and random signal analysis. There is also a treatment of some important applications of DSP, including signal detection in noise, radar range estimation, banking and financial applications, and audio effects production. Design and implementation of digital systems (such as integrators, differentiators, resonators and oscillators are also considered, along with the design of conventional digital filters. Part I is suitable for an elementary course in DSP. Part II (which is suitable for an advanced signal processing course), considers selected signal processing systems and techniques. Core topics covered are the Hilbert transformer, binary signal transmission, phase-locked loops, sigma-delta modulation, noise shaping, quantization, adaptive filters, and non-stationary signal analysis. Part III presents some selected advanced DSP topics. We hope that this book will contribute to the advancement of engineering education and that it will serve as a general reference book on digital signal processing.
Resumo:
This paper considers the on-line identification of a non-linear system in terms of a Hammerstein model, with a zero-memory non-linear gain followed by a linear system. The linear part is represented by a Laguerre expansion of its impulse response and the non-linear part by a polynomial. The identification procedure involves determination of the coefficients of the Laguerre expansion of correlation functions and an iterative adjustment of the parameters of the non-linear gain by gradient methods. The method is applicable to situations involving a wide class of input signals. Even in the presence of additive correlated noise, satisfactory performance is achieved with the variance of the error converging to a value close to the variance of the noise. Digital computer simulation establishes the practicability of the scheme in different situations.