928 resultados para SENSING MACHINERY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present how a thin RF sputtered layer of lanthanum oxide (La2O3) can alter electrical and improve hydrogen gas sensing characteristics of Pt/molybdenum oxide (MoO3) nanostructures Schottky diodes. We derived the barrier height, ideality factor and dielectric constant from the measured I–V characteristics at operating temperatures in the range of 25–300 ◦C. The dynamic response, response and recovery times were obtained upon exposure to hydrogen gas at different concentrations. Analysis of the results indicated a substantial improvement to the voltage shift sensitivity of the sensors incorporating the La2O3 layer. We associate this enhancement to the formation of numerous trap states due to the presence of the La2O3 thin film on the MoO3 nanoplatelets. These trap states increase the intensity of the dipolar charges at the metal–semiconductor interface, which induce greater bending of the energy bands. However, results also indicate that the presence of La2O3 trap states also increases response and recover times as electrons trapping and de-trapping processes occur before they can pass through this thin dielectric layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the optimal path planning and initialization interval of one or two UAVs in presence of a constant wind. The method compares previous literature results on synchronization of UAVs along convex curves, path planning and sampling in 2D and extends it to 3D. This method can be applied to observe gas/particle emissions inside a control volume during sampling loops. The flight pattern is composed of two phases: a start-up interval and a sampling interval which is represented by a semi-circular path. The methods were tested in four complex model test cases in 2D and 3D as well as one simulated real world scenario in 2D and one in 3D.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents material and gas sensing properties of Pt/SnO2 nanowires/SiC metal oxide semiconductor devices towards hydrogen. The SnO2 nanowires were deposited onto the SiC substrates by vapour-liquid-solid growth mechanism. The material properties of the sensors were investigated using scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The current-voltage characteristics have been analysed. The effective change in the barrier height for 1% hydrogen was found to be 142.91 meV. The dynamic response of the sensors towards hydrogen at different temperatures has also been studied. At 530°C, voltage shift of 310 mV for 1% hydrogen was observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we investigate how hydrogen sensing performance of thermally evaporated MoO3 nanoplatelets can be further improved by RF sputtering a thin layer of tantalum oxide (Ta2O5) or lanthanum oxide (La2O3). We show that dissociated hydrogen atoms cause the thin film layer to be polarised, inducing a measurable potential difference greater than that as reported previously. We attribute these observations to the presence of numerous traps in the thin layer; their states allow a stronger trapping of charge at the Pt-thin film oxide interface as compared to the MoO3 sensors without the coating. Under exposure to H2 (10 000 ppm) the maximum change in dielectric constant of 45.6 (at 260 °C) for the Ta2O5/MoO3 nanoplatelets and 31.6 (at 220 °C) for La2O3/MoO3 nanoplatelets. Subsequently, the maximum sensitivity for the Ta2O5/MoO3 is 16.87 (at 260 °C) and La2O3/MoO3 is 7.52 (at 300 °C).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation of the electrical and hydrogen sensing properties of a novel Schottky diode based on a nanostructured lanthanum oxide-molybdenum oxide compound is presented herein. Molybdenum oxide (MoO3) nanoplatelets were grown on SiC substrates via thermal evaporation which was then subsequently coated with lanthanum oxide (La2O3) by RF sputtering. The current-voltage characteristics and hydrogen sensing performance (change in barrier height and sensitivity as well as the dynamic response) were examined from 25 to 300°C. At 180°C, a voltage shift of 2.23V was measured from the sensor while exposed to 1% hydrogen gas under a 100 μA constant reverse bias current. The results indicate that the presence of a La2O3 thin layer substantially improves the hydrogen sensitivity of the MoO3 nanoplatelets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we present an investigation on Pt/graphene/GaN devices for hydrogen gas sensing applications. The graphene layer was deposited on GaN substrate using a chemical vapour deposition (CVD) technique and was characterised via Raman and X-ray photoelectron spectroscopy. The current-voltage (I-V) and dynamic response of the developed devices were investigated in forward and reverse bias operation at an optimum temperature of 160°C. Voltage shifts of 661.1 and 484.9 mV were recorded towards 1% hydrogen at forward and reverse constant bias current of 1 mA, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium oxide nanotubes Schottky diodes were fabricated for hydrogen gas sensing applications. The TiO2 nanotubes were synthesized via anodization of RF sputtered titanium films on SiC substrates. Two anodization potentials of 5 V and 20 V were used. Scanning electron microscopy of the synthesized films revealed nanotubes with avarage diameters of 20 nm and 75 nm. X-ray diffraction analysis revealed that the composition of the oxide varied with the anodization potential. TiO2 (anatase) being formed preferentially at 5 V and TiO (no anatase) at 20 V. Current-voltage characteristics of the diodes were studied towards hydrogen at temperatures from 25°C to 250°C. At constant current bias of −500 μA and 250°C, the lateral voltage shifts of 800 mV and 520 mV were recorded towards 1% hydrogen for the 5 V and 20 V anodized nanotubes, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc oxide (ZnO) is one of the most promising electronic and photonic materials to date. In this work, we present an enhanced ZnO Schottky gas sensor deposited on SiC substrates in comparison to those reported previously in literature. The performance of ZnO/SiC based Schottky thin film gas sensors produced a forward lateral voltage shift of 12.99mV and 111.87mV in response to concentrations of hydrogen gas at 0.06% and 1% in air at optimum temperature of 330 ºC. The maximum change in barrier height was calculated as 37.9 meV for 1% H2 sensing operation at the optimum temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pt/anodized TiO2/SiC based metal-oxide-semiconductor (MOS) devices were fabricated and characterized for their sensitivity towards propene (C3H6). Titanium (Ti) thin films were deposited onto the SiC substrates using a filtered cathodic vacuum arc (FCVA) method. Fluoride ions containing neutral electrolyte (0.5 wt% NH4F in ethylene glycol)were used to anodize the Ti films. The anodized films were subsequently annealed at 600 °C for 4 hrs in an oxygen rich environment to obtain TiO2. The current-voltage(I-V) characteristics of the Pt/TiO2/SiC devices were measured in different concentrations of propene. Exposure to the analyte gas caused a change in the Schottky barrier height and hence a lateral shift in the I-V characteristics. The effective change in the barrier height for 1% propene was calculated as 32.8 meV at 620°C. The dynamic response of the sensors was also investigated and a voltage shift of 157 mV was measured at 620°C during exposure to 1% propene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We developed Pt/tantalum oxide (Ta2O5) Schottky diodes for hydrogen sensing applications. Thin layer (4 nm) of Ta2O5 was deposited on silicon (Si) and silicon carbide (SiC) substrates using the radio frequency sputtering technique. We compared the performance of these sensors at different temperatures of 100 °C and 150 °C. At these operating temperatures, the sensor based on SiC exhibited a larger sensitivity, whilst the sensor based on Si exhibited a faster response toward hydrogen gas. We discussed herein, the experimental results obtained for these Pt/Ta2O5 based Schottky diodes exhibited that they are promising candidates for hydrogen sensing applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a multi-layer spectrum sensing optimisation algorithm to maximise sensing efficiency by computing the optimal sensing and transmission durations for a fast changing, dynamic primary user. Dynamic primary user traffic is modelled as a random process, where the primary user changes states during both the sensing period and transmission period to reflect a more realistic scenario. Furthermore, we formulate joint constraints to correctly reflect interference to the primary user and lost opportunity of the secondary user during the transmission period. Finally, we implement a novel duty cycle based detector that is optimised with respect to PU traffic to accurately detect primary user activity during the sensing period. Simulation results show that unlike currently used detection models, the proposed algorithm can jointly optimise the sensing and transmission durations to simultaneously satisfy the optimisation constraints for the considered primary user traffic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While substantial research on intelligent transportation systems has focused on the development of novel wireless communication technologies and protocols, relatively little work has sought to fully exploit proximity-based wireless technologies that passengers actually carry with them today. This paper presents the real-world deployment of a system that exploits public transit bus passengers’ Bluetooth-capable devices to capture and reconstruct micro- and macro-passenger behavior. We present supporting evidence that approximately 12% of passengers already carry Bluetooth-enabled devices and that the data collected on these passengers captures with almost 80 % accuracy the daily fluctuation of actual passengers flows. The paper makes three contributions in terms of understanding passenger behavior: We verify that the length of passenger trips is exponentially bounded, the frequency of passenger trips follows a power law distribution, and the microstructure of the network of passenger movements is polycentric.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mobile devices and smartphones have become a significant communication channel for everyday life. The sensing capabilities of mobile devices are expanding rapidly, and sensors embedded in these devices are cheaper and more powerful than before. It is evident that mobile devices have become the most suitable candidates to sense contextual information without needing extra tools. However, current research shows only a limited number of sensors are being explored and investigated. As a result, it still needs to be clarified what forms of contextual information extracted from mo- bile sensors are useful. Therefore, this research investigates the context sensing using current mobile sensors, the study follows experimental methods and sensor data is evaluated and synthesised, in order to deduce the value of various sensors and combinations of sensor for the use in context-aware mobile applications. This study aims to develop a context fusion framework that will enhance the context-awareness on mobile applications, as well as exploring innovative techniques for context sensing on smartphone devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of game design elements to non-game contexts has become known as gamification. Previous research has suggested that framing tedious and non-motivating tasks as game-like can make them enjoyable and motivating (e.g., de Oliveira, et al., 2010; Fujiki, et al., 2007; Chiu, et al., 2009). Smartphone applications lend themselves to being gamified as the underlying mobile technology has the ability to sense user activities and their surrounding environment. These sensed activities can be used to implement and enforce game-like rules based around many physical activities (e.g., exercise, travel, or eating). If researchers wish to investigate this area, they first need an existing gamified application to study. However if an appropriate application does not exist then the researcher may need to create their own gamified prototype to study. Unfortunately, there is little previous research that details or explains the design and integration of game elements to non-game mobile applications. This chapter explores this gap and shares a framework that was used to add videogame-like achievements to an orientation mobile application developed for new university students. The framework proved useful and initial results are discussed from two studies. However, further development of the framework is needed, including further consideration of what makes an effective gamified experience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant and machinery valuation is important to every company.s annual financial reporting. It is reported under the non-current assets section, and the valuers are generally employed to provide the up to date valuation of the non-current assets valuation such as property, plant and equipment that can make up to 80% of the total assets of a company. The valuation of plant and machinery is also important for other purposes such as securing loan facilities, sales, takeover, insurance and auction. The application of 2005 International Financial Reporting Standard (IFRS) has a subsequent impact on the financial sector, as a whole. The accountants have to choose between the Historical Cost approach and Market Value approach in determining the value of the client.s assets. In Malaysia, the implementation of IFRS has a domino effect on the financial system, especially for plant and machinery valuation for financial reporting. The comparison data for plant and machinery valuation is limited unlike land and building valuation. The question of Malaysian valuer.s ability to comply with the IFRS standard keeps rising every day, not just to the accountants, but also other related parties such as financial institutions, government agencies and the clients. This is happening because of different interpretations of premise of value for plant and machinery, as well as methods been used and differences in standards of reporting among the valuers conducting plant and machinery valuation. The root of the problem lies in the lack of practical guidelines governing plant and machinery valuation practices and different schools of thought among the valuers. Some follow the United Kingdom.s RICS guidelines, whilst some valuers are more comfortable with the United State.s USPAP rules, especially on the premise of value. This research is to investigate the international best practices of plant and machinery valuation and to establish the common valuation concept, awareness and application of valuation methodology and valuation process for plant and machinery valuation in Malaysia. This research uses a combination of the qualitative and quantitative research approach. In the qualitative approach, the content analyses were conducted from the international practices and current Malaysian implementation of plant and machinery valuation. A survey (quantitative approach) via questionnaire was implemented among the registered and probationary valuers in Malaysia to investigate their understanding and opinion relating to plant and machinery valuation based on the current practices. The significance of this research is the identification of international plant and machinery practices and the understanding of current practices of plant and machinery valuation in Malaysia. It is found that issues embedding plant and machinery valuation practices are limited numbers of resources available either from scholars or practitioner. This is supported by the general finding from the research survey that indicates that there are immediate needs for practical notes or guidelines to be developed and implemented to support the Malaysian valuers practising plant and machinery valuation. This move will lead to a better understanding of plant and machinery valuation, reducing discrepancies in valuation of plant and machinery and increased accuracy among practising valuers.