995 resultados para POROUS SILICON LUMINESCENCE


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The samples of as-synthesized siliceous MCM-41, extracted MCM-41, amorphous silica particles and silica xerogels were heat treated from room temperature to 1000degreesC. Their photoluminescence (PL) spectra at room temperature excited by 254nm and 365nm ultraviolet light (UV) were investigated and compared. Excited by 254nm UV the MCM-41 samples do not display PL but amorphous silica particles and silica xerogels show PL, which changes with the heat treatment conditions for the samples. However, when excited by 365nm UV the PL spectra for the MCM-41 and the amorphous samples are similar. The carbon impurity and E' center mechanisms can be ruled out as the origin of PL in siliceous MCM-41 under UV excitation. The PL of MCM-41 series samples probably originates from oxygen-related defect center like dropSi-O-. according to the present work.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Scanned probe oxidation (SPO) nanolithography has been performed with an atomic force microscope (AFM) on an octadecyl-terminated silicon (111) surface to create protuberant oxide line patterns under ambient conditions in contact mode. The kinetic investigations of this SPO process indicate that the oxide line height increases linearly with applied voltage and decreases logarithmically with writing, speed. The oxide line width also tends to vary with the same law. The ambient humidity and the AFM tip state can remarkably influence this process, too. As compared with traditional octadecylsilated SiO2/Si substrate, such a substrate can guarantee the SPO with an obviously lowered voltage and a greatly increased writing speed. This study demonstrates that such alkylated silicon is a promising silicon-based substrate material for SPO nanolithography.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The application of precision grinding for the formation of a silicon diaphragm is investigated. The test structures involved 2-6 mm diam diaphragms with thicknesses in the range of 25-150 //m. When grinding is performed without supporting the diaphragm, bending occurs due to nonuniform removal of the silicon material over the diaphragm region. The magnitude of bending depends on the µNal thickness of the diaphragm. The results demonstrate that the use of a porous silicon support can significantly reduce the amount of bending, by a factor of up to 300 in the case of 50 m thick diaphragms. The use of silicon on insulator (SOI) technology can also suppress or eliminate bending although this may be a less economical process. Stress measurements in the diaphragms were performed using x-ray and Raman spectroscopies. The results show stress of the order of 1 X107-! X108 Pa in unsupported and supported by porous silicon diaphragms while SOI technology provides stress-free diaphragms. Results obtained from finite element method analysis to determine deterioration in the performance of a 6 mm diaphragm due to bending are presented. These results show a 10% reduction in performance for a 75 µm thick diaphragm with bending amplitude of 30 fim, but negligible reduction if the bending is reduced to

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Previous results concerning radiative emission under laser irradiation of silicon nanopowder are reinterpreted in terms of thermal emission. A model is developed that considers the particles in the powder as independent, so under vacuum the only dissipation mechanism is thermal radiation. The supralinear dependence observed between the intensity of the emitted radiation and laser power is predicted by the model, as is the exponential quenching when the gas pressure around the sample increases. The analysis allows us to determine the sample temperature. The local heating of the sample has been assessed independently by the position of the transverse optical Raman mode. Finally, it is suggested that the photoluminescence observed in porous silicon and similar materials could, in some cases, be blackbody radiation

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Renewable energy is growing in demand, and thus the the manufacture of solar cells and photovoltaic arrays has advanced dramatically in recent years. This is proved by the fact that the photovoltaic production has doubled every 2 years, increasing by an average of 48% each year since 2002. Covering the general overview of solar cell working, and its model, this thesis will start with the three generations of photovoltaic solar cell technology, and move to the motivation of dedicating research to nanostructured solar cell. For the current generation solar cells, among several factors, like photon capture, photon reflection, carrier generation by photons, carrier transport and collection, the efficiency also depends on the absorption of photons. The absorption coefficient,α, and its dependence on the wavelength, λ, is of major concern to improve the efficiency. Nano-silicon structures (quantum wells and quantum dots) have a unique advantage compared to bulk and thin film crystalline silicon that multiple direct and indirect band gaps can be realized by appropriate size control of the quantum wells. This enables multiple wavelength photons of the solar spectrum to be absorbed efficiently. There is limited research on the calculation of absorption coefficient in nano structures of silicon. We present a theoretical approach to calculate the absorption coefficient using quantum mechanical calculations on the interaction of photons with the electrons of the valence band. One model is that the oscillator strength of the direct optical transitions is enhanced by the quantumconfinement effect in Si nanocrystallites. These kinds of quantum wells can be realized in practice in porous silicon. The absorption coefficient shows a peak of 64638.2 cm-1 at = 343 nm at photon energy of ξ = 3.49 eV ( = 355.532 nm). I have shown that a large value of absorption coefficient α comparable to that of bulk silicon is possible in silicon QDs because of carrier confinement. Our results have shown that we can enhance the absorption coefficient by an order of 10, and at the same time a nearly constant absorption coefficient curve over the visible spectrum. The validity of plots is verified by the correlation with experimental photoluminescence plots. A very generic comparison for the efficiency of p-i-n junction solar cell is given for a cell incorporating QDs and sans QDs. The design and fabrication technique is discussed in brief. I have shown that by using QDs in the intrinsic region of a cell, we can improve the efficiency by a factor of 1.865 times. Thus for a solar cell of efficiency of 26% for first generation solar cell, we can improve the efficiency to nearly 48.5% on using QDs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Graded-index ZrO2 films has been fabricated on K9 glass by glancing angle deposition. Because the index mismatch at the interface has been reduced, the film results in wideband high-transmission antireflection. From 400nm to 1200nm, the film reflection is lower than 0.8% and the lowest value is 0.2% at 432nm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A stoichiometric Gd2O3-x thin film has been grown on a silicon (10 0) substrate with a low-energy dual ion-beam epitaxial technique. Gd2O3-x shares Gd2O3 structures although there are many oxygen deficiencies in the film. The photoluminescence (PL) measurements have been performed in a temperature range 5-300 K. The detailed characters of the peak position, the full-width at half-maximum (FWHM) and the peak intensity at different temperature were reported. An anomalous intensity behavior of the PL spectra has been observed, which is similar to that of some other materials such as porous silicon and silicon nanocrystals in silicon dioxide. Therefore, we suggest that the nanoclusters with the oxygen deficiencies contribute to the PL emission and employ the model of singlet-triplet exchange splitting of exciton to discuss the four peaks observed in the experiment. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using first-principles methods, we have systematically calculated the defect formation energies and transition energy levels of group-III and group-V impurities doped in H passivated Si quantum dots (QDs) as functions of the QD size. The general chemical trends found in the QDs are similar to that found in bulk Si. We show that defect formation energy and transition energy level increase when the size of the QD decreases; thus, doping in small Si QDs becomes more difficult. B-Si has the lowest acceptor transition energy level, and it is more stable near the surface than at the center of the H passivated Si QD. On the other hand, P-Si has the smallest donor ionization energy, and it prefers to stay at the interior of the H passivated Si QD. We explained the general chemical trends and the dependence on the QD size in terms of the atomic chemical potentials and quantum confinement effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nation Natural Science Foundation of China 50672079 60676027 60837001 60776007; National Basic Research Program of China (973 Program) 2007CB613404; China-MOST International Sci & Tech Cooperation and Exchange 2008DFA51230

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stoichiometric gadolinium oxide thin films have been grown on silicon (100) substrates with a low-energy dual ion-beam epitaxial technique. Gadolinium oxide shares Gd2O3 structures although the ratio of gadolinium and oxygen in the film is about 2:1 and a lot of oxygen deficiencies exist. Photoluminescence (PL) measurements have been carried out within a temperature range of 5-300 K. The detailed characters of the PL emission integrated intensity, peak position, and peak width at different temperature were reported and an anomalous photoluminescence behavior was observed. The character of PL emission integrated intensity is similar to that of some other materials such as porous silicon and silicon nanocrystals in silicon dioxide. Four peaks relative to alpha band and beta band were observed also. Therefore we suggest that the nanoclusters with the oxygen deficiencies contribute to the PL emission and the model of singlet-triplet exchange splitting of exciton was employed for discussion. (C) 2003 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The hydrogenated amorphous SiOx films (a-SiOx:H) with various oxygen contents have been prepared using plasma enhanced chemical vapor deposition technique. The films were implanted with erbium and annealed by rapid thermal annealing. An intense photoluminescence (PL) of Er at 1.54 mum has been observed at 77 K and at room temperature. The PL intensity depends strongly on both the oxygen content of the film and the rapid thermal annealing temperature and reaches its maximum if the ratio of O/Si in the film is approximately equal to 1.0 at 77 K and to 1.76 at room temperature. The microstructure of the film also has strong influences on the PL intensity. The PL intensity at 250 K is slightly more than a half of that at 15 K. It means that the temperature quenching effect of the PL intensity is very weak.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Silicon-based silica waveguide (SiO2/Si) devices have huge applications in optical telecommunication. SiO2 up to 25-mu m thick is necessary for some passive SiO2/Si waveguide devices. Oxidizing porous silicon to obtain thick SiO2 as cladding layer is presented. The experimental results of porous layer and oxidized porous layer formation were given. The relationship between cracking of SiO2 and temperature varying rate was given experimentally. Such conclusions are drawn: oxidation rate of porous silicon is several orders faster than that of bulk silicon; appropriate temperature variation rate during oxidation can prevent SiO2 on silicon substrates from cracking, and 25 mu m thick silicon dioxide layer has been obtained. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A method for oxidising porous silicon to obtain thick SiO2 as the cladding layer of silicon-based silica waveguides is presented. The experimental results of oxidation are given. The following conclusions are drawn: the oxidation rate of porous silicon is several orders higher than that of bulk silicon, the appropriate temperature variation rate during oxidation combined with proper porosity can prevent SiO2 on silicon substrates from cracking. and a 25 mu M thick silicon dioxide layer has been obtained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interface state recombination effect from the quantum confinement effect in PL signals from the SRO material system was studied. The results show that the larger the size of Si NCs, the more beneficial for the interface state recombination process to surpass the quantum confinement process, in support of Qin's model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The chemical adsorption of sodium sulphide, ferrocene, hydroquinone and p-methyl-nitrobenzene onto the surface of a GaAs/AlxGa1-xAs multiquantum well semiconductor was characterized by steady state and time-resolved photoluminescence (PL) spectroscopy. The changes in the PL response, including the red shift of the emission peak of the exciton in the quantum well and the enhancement of the PL intensity, are discussed in terms of the interactions of the adsorbed molecules with surface states.