999 resultados para Hardware Transactional Memory
Resumo:
Modern embedded systems embrace many-core shared-memory designs. Due to constrained power and area budgets, most of them feature software-managed scratchpad memories instead of data caches to increase the data locality. It is therefore programmers’ responsibility to explicitly manage the memory transfers, and this make programming these platform cumbersome. Moreover, complex modern applications must be adequately parallelized before they can the parallel potential of the platform into actual performance. To support this, programming languages were proposed, which work at a high level of abstraction, and rely on a runtime whose cost hinders performance, especially in embedded systems, where resources and power budget are constrained. This dissertation explores the applicability of the shared-memory paradigm on modern many-core systems, focusing on the ease-of-programming. It focuses on OpenMP, the de-facto standard for shared memory programming. In a first part, the cost of algorithms for synchronization and data partitioning are analyzed, and they are adapted to modern embedded many-cores. Then, the original design of an OpenMP runtime library is presented, which supports complex forms of parallelism such as multi-level and irregular parallelism. In the second part of the thesis, the focus is on heterogeneous systems, where hardware accelerators are coupled to (many-)cores to implement key functional kernels with orders-of-magnitude of speedup and energy efficiency compared to the “pure software” version. However, three main issues rise, namely i) platform design complexity, ii) architectural scalability and iii) programmability. To tackle them, a template for a generic hardware processing unit (HWPU) is proposed, which share the memory banks with cores, and the template for a scalable architecture is shown, which integrates them through the shared-memory system. Then, a full software stack and toolchain are developed to support platform design and to let programmers exploiting the accelerators of the platform. The OpenMP frontend is extended to interact with it.
Resumo:
Virtualization has become a common abstraction layer in modern data centers. By multiplexing hardware resources into multiple virtual machines (VMs) and thus enabling several operating systems to run on the same physical platform simultaneously, it can effectively reduce power consumption and building size or improve security by isolating VMs. In a virtualized system, memory resource management plays a critical role in achieving high resource utilization and performance. Insufficient memory allocation to a VM will degrade its performance dramatically. On the contrary, over-allocation causes waste of memory resources. Meanwhile, a VM’s memory demand may vary significantly. As a result, effective memory resource management calls for a dynamic memory balancer, which, ideally, can adjust memory allocation in a timely manner for each VM based on their current memory demand and thus achieve the best memory utilization and the optimal overall performance. In order to estimate the memory demand of each VM and to arbitrate possible memory resource contention, a widely proposed approach is to construct an LRU-based miss ratio curve (MRC), which provides not only the current working set size (WSS) but also the correlation between performance and the target memory allocation size. Unfortunately, the cost of constructing an MRC is nontrivial. In this dissertation, we first present a low overhead LRU-based memory demand tracking scheme, which includes three orthogonal optimizations: AVL-based LRU organization, dynamic hot set sizing and intermittent memory tracking. Our evaluation results show that, for the whole SPEC CPU 2006 benchmark suite, after applying the three optimizing techniques, the mean overhead of MRC construction is lowered from 173% to only 2%. Based on current WSS, we then predict its trend in the near future and take different strategies for different prediction results. When there is a sufficient amount of physical memory on the host, it locally balances its memory resource for the VMs. Once the local memory resource is insufficient and the memory pressure is predicted to sustain for a sufficiently long time, a relatively expensive solution, VM live migration, is used to move one or more VMs from the hot host to other host(s). Finally, for transient memory pressure, a remote cache is used to alleviate the temporary performance penalty. Our experimental results show that this design achieves 49% center-wide speedup.
Resumo:
Reuse distance analysis, the prediction of how many distinct memory addresses will be accessed between two accesses to a given address, has been established as a useful technique in profile-based compiler optimization, but the cost of collecting the memory reuse profile has been prohibitive for some applications. In this report, we propose using the hardware monitoring facilities available in existing CPUs to gather an approximate reuse distance profile. The difficulties associated with this monitoring technique are discussed, most importantly that there is no obvious link between the reuse profile produced by hardware monitoring and the actual reuse behavior. Potential applications which would be made viable by a reliable hardware-based reuse distance analysis are identified.
Resumo:
There is a growing interest in simulating natural phenomena in computer graphics applications. Animating natural scenes in real time is one of the most challenging problems due to the inherent complexity of their structure, formed by millions of geometric entities, and the interactions that happen within. An example of natural scenario that is needed for games or simulation programs are forests. Forests are difficult to render because the huge amount of geometric entities and the large amount of detail to be represented. Moreover, the interactions between the objects (grass, leaves) and external forces such as wind are complex to model. In this paper we concentrate in the rendering of falling leaves at low cost. We present a technique that exploits graphics hardware in order to render thousands of leaves with different falling paths in real time and low memory requirements.
Resumo:
An approximate analytic model of a shared memory multiprocessor with a Cache Only Memory Architecture (COMA), the busbased Data Difussion Machine (DDM), is presented and validated. It describes the timing and interference in the system as a function of the hardware, the protocols, the topology and the workload. Model results have been compared to results from an independent simulator. The comparison shows good model accuracy specially for non-saturated systems, where the errors in response times and device utilizations are independent of the number of processors and remain below 10% in 90% of the simulations. Therefore, the model can be used as an average performance prediction tool that avoids expensive simulations in the design of systems with many processors.
Resumo:
La optimización de parámetros tales como el consumo de potencia, la cantidad de recursos lógicos empleados o la ocupación de memoria ha sido siempre una de las preocupaciones principales a la hora de diseñar sistemas embebidos. Esto es debido a que se trata de sistemas dotados de una cantidad de recursos limitados, y que han sido tradicionalmente empleados para un propósito específico, que permanece invariable a lo largo de toda la vida útil del sistema. Sin embargo, el uso de sistemas embebidos se ha extendido a áreas de aplicación fuera de su ámbito tradicional, caracterizadas por una mayor demanda computacional. Así, por ejemplo, algunos de estos sistemas deben llevar a cabo un intenso procesado de señales multimedia o la transmisión de datos mediante sistemas de comunicaciones de alta capacidad. Por otra parte, las condiciones de operación del sistema pueden variar en tiempo real. Esto sucede, por ejemplo, si su funcionamiento depende de datos medidos por el propio sistema o recibidos a través de la red, de las demandas del usuario en cada momento, o de condiciones internas del propio dispositivo, tales como la duración de la batería. Como consecuencia de la existencia de requisitos de operación dinámicos es necesario ir hacia una gestión dinámica de los recursos del sistema. Si bien el software es inherentemente flexible, no ofrece una potencia computacional tan alta como el hardware. Por lo tanto, el hardware reconfigurable aparece como una solución adecuada para tratar con mayor flexibilidad los requisitos variables dinámicamente en sistemas con alta demanda computacional. La flexibilidad y adaptabilidad del hardware requieren de dispositivos reconfigurables que permitan la modificación de su funcionalidad bajo demanda. En esta tesis se han seleccionado las FPGAs (Field Programmable Gate Arrays) como los dispositivos más apropiados, hoy en día, para implementar sistemas basados en hardware reconfigurable De entre todas las posibilidades existentes para explotar la capacidad de reconfiguración de las FPGAs comerciales, se ha seleccionado la reconfiguración dinámica y parcial. Esta técnica consiste en substituir una parte de la lógica del dispositivo, mientras el resto continúa en funcionamiento. La capacidad de reconfiguración dinámica y parcial de las FPGAs es empleada en esta tesis para tratar con los requisitos de flexibilidad y de capacidad computacional que demandan los dispositivos embebidos. La propuesta principal de esta tesis doctoral es el uso de arquitecturas de procesamiento escalables espacialmente, que son capaces de adaptar su funcionalidad y rendimiento en tiempo real, estableciendo un compromiso entre dichos parámetros y la cantidad de lógica que ocupan en el dispositivo. A esto nos referimos con arquitecturas con huellas escalables. En particular, se propone el uso de arquitecturas altamente paralelas, modulares, regulares y con una alta localidad en sus comunicaciones, para este propósito. El tamaño de dichas arquitecturas puede ser modificado mediante la adición o eliminación de algunos de los módulos que las componen, tanto en una dimensión como en dos. Esta estrategia permite implementar soluciones escalables, sin tener que contar con una versión de las mismas para cada uno de los tamaños posibles de la arquitectura. De esta manera se reduce significativamente el tiempo necesario para modificar su tamaño, así como la cantidad de memoria necesaria para almacenar todos los archivos de configuración. En lugar de proponer arquitecturas para aplicaciones específicas, se ha optado por patrones de procesamiento genéricos, que pueden ser ajustados para solucionar distintos problemas en el estado del arte. A este respecto, se proponen patrones basados en esquemas sistólicos, así como de tipo wavefront. Con el objeto de poder ofrecer una solución integral, se han tratado otros aspectos relacionados con el diseño y el funcionamiento de las arquitecturas, tales como el control del proceso de reconfiguración de la FPGA, la integración de las arquitecturas en el resto del sistema, así como las técnicas necesarias para su implementación. Por lo que respecta a la implementación, se han tratado distintos aspectos de bajo nivel dependientes del dispositivo. Algunas de las propuestas realizadas a este respecto en la presente tesis doctoral son un router que es capaz de garantizar el correcto rutado de los módulos reconfigurables dentro del área destinada para ellos, así como una estrategia para la comunicación entre módulos que no introduce ningún retardo ni necesita emplear recursos configurables del dispositivo. El flujo de diseño propuesto se ha automatizado mediante una herramienta denominada DREAMS. La herramienta se encarga de la modificación de las netlists correspondientes a cada uno de los módulos reconfigurables del sistema, y que han sido generadas previamente mediante herramientas comerciales. Por lo tanto, el flujo propuesto se entiende como una etapa de post-procesamiento, que adapta esas netlists a los requisitos de la reconfiguración dinámica y parcial. Dicha modificación la lleva a cabo la herramienta de una forma completamente automática, por lo que la productividad del proceso de diseño aumenta de forma evidente. Para facilitar dicho proceso, se ha dotado a la herramienta de una interfaz gráfica. El flujo de diseño propuesto, y la herramienta que lo soporta, tienen características específicas para abordar el diseño de las arquitecturas dinámicamente escalables propuestas en esta tesis. Entre ellas está el soporte para el realojamiento de módulos reconfigurables en posiciones del dispositivo distintas a donde el módulo es originalmente implementado, así como la generación de estructuras de comunicación compatibles con la simetría de la arquitectura. El router has sido empleado también en esta tesis para obtener un rutado simétrico entre nets equivalentes. Dicha posibilidad ha sido explotada para aumentar la protección de circuitos con altos requisitos de seguridad, frente a ataques de canal lateral, mediante la implantación de lógica complementaria con rutado idéntico. Para controlar el proceso de reconfiguración de la FPGA, se propone en esta tesis un motor de reconfiguración especialmente adaptado a los requisitos de las arquitecturas dinámicamente escalables. Además de controlar el puerto de reconfiguración, el motor de reconfiguración ha sido dotado de la capacidad de realojar módulos reconfigurables en posiciones arbitrarias del dispositivo, en tiempo real. De esta forma, basta con generar un único bitstream por cada módulo reconfigurable del sistema, independientemente de la posición donde va a ser finalmente reconfigurado. La estrategia seguida para implementar el proceso de realojamiento de módulos es diferente de las propuestas existentes en el estado del arte, pues consiste en la composición de los archivos de configuración en tiempo real. De esta forma se consigue aumentar la velocidad del proceso, mientras que se reduce la longitud de los archivos de configuración parciales a almacenar en el sistema. El motor de reconfiguración soporta módulos reconfigurables con una altura menor que la altura de una región de reloj del dispositivo. Internamente, el motor se encarga de la combinación de los frames que describen el nuevo módulo, con la configuración existente en el dispositivo previamente. El escalado de las arquitecturas de procesamiento propuestas en esta tesis también se puede beneficiar de este mecanismo. Se ha incorporado también un acceso directo a una memoria externa donde se pueden almacenar bitstreams parciales. Para acelerar el proceso de reconfiguración se ha hecho funcionar el ICAP por encima de la máxima frecuencia de reloj aconsejada por el fabricante. Así, en el caso de Virtex-5, aunque la máxima frecuencia del reloj deberían ser 100 MHz, se ha conseguido hacer funcionar el puerto de reconfiguración a frecuencias de operación de hasta 250 MHz, incluyendo el proceso de realojamiento en tiempo real. Se ha previsto la posibilidad de portar el motor de reconfiguración a futuras familias de FPGAs. Por otro lado, el motor de reconfiguración se puede emplear para inyectar fallos en el propio dispositivo hardware, y así ser capaces de evaluar la tolerancia ante los mismos que ofrecen las arquitecturas reconfigurables. Los fallos son emulados mediante la generación de archivos de configuración a los que intencionadamente se les ha introducido un error, de forma que se modifica su funcionalidad. Con el objetivo de comprobar la validez y los beneficios de las arquitecturas propuestas en esta tesis, se han seguido dos líneas principales de aplicación. En primer lugar, se propone su uso como parte de una plataforma adaptativa basada en hardware evolutivo, con capacidad de escalabilidad, adaptabilidad y recuperación ante fallos. En segundo lugar, se ha desarrollado un deblocking filter escalable, adaptado a la codificación de vídeo escalable, como ejemplo de aplicación de las arquitecturas de tipo wavefront propuestas. El hardware evolutivo consiste en el uso de algoritmos evolutivos para diseñar hardware de forma autónoma, explotando la flexibilidad que ofrecen los dispositivos reconfigurables. En este caso, los elementos de procesamiento que componen la arquitectura son seleccionados de una biblioteca de elementos presintetizados, de acuerdo con las decisiones tomadas por el algoritmo evolutivo, en lugar de definir la configuración de las mismas en tiempo de diseño. De esta manera, la configuración del core puede cambiar cuando lo hacen las condiciones del entorno, en tiempo real, por lo que se consigue un control autónomo del proceso de reconfiguración dinámico. Así, el sistema es capaz de optimizar, de forma autónoma, su propia configuración. El hardware evolutivo tiene una capacidad inherente de auto-reparación. Se ha probado que las arquitecturas evolutivas propuestas en esta tesis son tolerantes ante fallos, tanto transitorios, como permanentes y acumulativos. La plataforma evolutiva se ha empleado para implementar filtros de eliminación de ruido. La escalabilidad también ha sido aprovechada en esta aplicación. Las arquitecturas evolutivas escalables permiten la adaptación autónoma de los cores de procesamiento ante fluctuaciones en la cantidad de recursos disponibles en el sistema. Por lo tanto, constituyen un ejemplo de escalabilidad dinámica para conseguir un determinado nivel de calidad, que puede variar en tiempo real. Se han propuesto dos variantes de sistemas escalables evolutivos. El primero consiste en un único core de procesamiento evolutivo, mientras que el segundo está formado por un número variable de arrays de procesamiento. La codificación de vídeo escalable, a diferencia de los codecs no escalables, permite la decodificación de secuencias de vídeo con diferentes niveles de calidad, de resolución temporal o de resolución espacial, descartando la información no deseada. Existen distintos algoritmos que soportan esta característica. En particular, se va a emplear el estándar Scalable Video Coding (SVC), que ha sido propuesto como una extensión de H.264/AVC, ya que este último es ampliamente utilizado tanto en la industria, como a nivel de investigación. Para poder explotar toda la flexibilidad que ofrece el estándar, hay que permitir la adaptación de las características del decodificador en tiempo real. El uso de las arquitecturas dinámicamente escalables es propuesto en esta tesis con este objetivo. El deblocking filter es un algoritmo que tiene como objetivo la mejora de la percepción visual de la imagen reconstruida, mediante el suavizado de los "artefactos" de bloque generados en el lazo del codificador. Se trata de una de las tareas más intensivas en procesamiento de datos de H.264/AVC y de SVC, y además, su carga computacional es altamente dependiente del nivel de escalabilidad seleccionado en el decodificador. Por lo tanto, el deblocking filter ha sido seleccionado como prueba de concepto de la aplicación de las arquitecturas dinámicamente escalables para la compresión de video. La arquitectura propuesta permite añadir o eliminar unidades de computación, siguiendo un esquema de tipo wavefront. La arquitectura ha sido propuesta conjuntamente con un esquema de procesamiento en paralelo del deblocking filter a nivel de macrobloque, de tal forma que cuando se varía del tamaño de la arquitectura, el orden de filtrado de los macrobloques varia de la misma manera. El patrón propuesto se basa en la división del procesamiento de cada macrobloque en dos etapas independientes, que se corresponden con el filtrado horizontal y vertical de los bloques dentro del macrobloque. Las principales contribuciones originales de esta tesis son las siguientes: - El uso de arquitecturas altamente regulares, modulares, paralelas y con una intensa localidad en sus comunicaciones, para implementar cores de procesamiento dinámicamente reconfigurables. - El uso de arquitecturas bidimensionales, en forma de malla, para construir arquitecturas dinámicamente escalables, con una huella escalable. De esta forma, las arquitecturas permiten establecer un compromiso entre el área que ocupan en el dispositivo, y las prestaciones que ofrecen en cada momento. Se proponen plantillas de procesamiento genéricas, de tipo sistólico o wavefront, que pueden ser adaptadas a distintos problemas de procesamiento. - Un flujo de diseño y una herramienta que lo soporta, para el diseño de sistemas reconfigurables dinámicamente, centradas en el diseño de las arquitecturas altamente paralelas, modulares y regulares propuestas en esta tesis. - Un esquema de comunicaciones entre módulos reconfigurables que no introduce ningún retardo ni requiere el uso de recursos lógicos propios. - Un router flexible, capaz de resolver los conflictos de rutado asociados con el diseño de sistemas reconfigurables dinámicamente. - Un algoritmo de optimización para sistemas formados por múltiples cores escalables que optimice, mediante un algoritmo genético, los parámetros de dicho sistema. Se basa en un modelo conocido como el problema de la mochila. - Un motor de reconfiguración adaptado a los requisitos de las arquitecturas altamente regulares y modulares. Combina una alta velocidad de reconfiguración, con la capacidad de realojar módulos en tiempo real, incluyendo el soporte para la reconfiguración de regiones que ocupan menos que una región de reloj, así como la réplica de un módulo reconfigurable en múltiples posiciones del dispositivo. - Un mecanismo de inyección de fallos que, empleando el motor de reconfiguración del sistema, permite evaluar los efectos de fallos permanentes y transitorios en arquitecturas reconfigurables. - La demostración de las posibilidades de las arquitecturas propuestas en esta tesis para la implementación de sistemas de hardware evolutivos, con una alta capacidad de procesamiento de datos. - La implementación de sistemas de hardware evolutivo escalables, que son capaces de tratar con la fluctuación de la cantidad de recursos disponibles en el sistema, de una forma autónoma. - Una estrategia de procesamiento en paralelo para el deblocking filter compatible con los estándares H.264/AVC y SVC que reduce el número de ciclos de macrobloque necesarios para procesar un frame de video. - Una arquitectura dinámicamente escalable que permite la implementación de un nuevo deblocking filter, totalmente compatible con los estándares H.264/AVC y SVC, que explota el paralelismo a nivel de macrobloque. El presente documento se organiza en siete capítulos. En el primero se ofrece una introducción al marco tecnológico de esta tesis, especialmente centrado en la reconfiguración dinámica y parcial de FPGAs. También se motiva la necesidad de las arquitecturas dinámicamente escalables propuestas en esta tesis. En el capítulo 2 se describen las arquitecturas dinámicamente escalables. Dicha descripción incluye la mayor parte de las aportaciones a nivel arquitectural realizadas en esta tesis. Por su parte, el flujo de diseño adaptado a dichas arquitecturas se propone en el capítulo 3. El motor de reconfiguración se propone en el 4, mientras que el uso de dichas arquitecturas para implementar sistemas de hardware evolutivo se aborda en el 5. El deblocking filter escalable se describe en el 6, mientras que las conclusiones finales de esta tesis, así como la descripción del trabajo futuro, son abordadas en el capítulo 7. ABSTRACT The optimization of system parameters, such as power dissipation, the amount of hardware resources and the memory footprint, has been always a main concern when dealing with the design of resource-constrained embedded systems. This situation is even more demanding nowadays. Embedded systems cannot anymore be considered only as specific-purpose computers, designed for a particular functionality that remains unchanged during their lifetime. Differently, embedded systems are now required to deal with more demanding and complex functions, such as multimedia data processing and high-throughput connectivity. In addition, system operation may depend on external data, the user requirements or internal variables of the system, such as the battery life-time. All these conditions may vary at run-time, leading to adaptive scenarios. As a consequence of both the growing computational complexity and the existence of dynamic requirements, dynamic resource management techniques for embedded systems are needed. Software is inherently flexible, but it cannot meet the computing power offered by hardware solutions. Therefore, reconfigurable hardware emerges as a suitable technology to deal with the run-time variable requirements of complex embedded systems. Adaptive hardware requires the use of reconfigurable devices, where its functionality can be modified on demand. In this thesis, Field Programmable Gate Arrays (FPGAs) have been selected as the most appropriate commercial technology existing nowadays to implement adaptive hardware systems. There are different ways of exploiting reconfigurability in reconfigurable devices. Among them is dynamic and partial reconfiguration. This is a technique which consists in substituting part of the FPGA logic on demand, while the rest of the device continues working. The strategy followed in this thesis is to exploit the dynamic and partial reconfiguration of commercial FPGAs to deal with the flexibility and complexity demands of state-of-the-art embedded systems. The proposal of this thesis to deal with run-time variable system conditions is the use of spatially scalable processing hardware IP cores, which are able to adapt their functionality or performance at run-time, trading them off with the amount of logic resources they occupy in the device. This is referred to as a scalable footprint in the context of this thesis. The distinguishing characteristic of the proposed cores is that they rely on highly parallel, modular and regular architectures, arranged in one or two dimensions. These architectures can be scaled by means of the addition or removal of the composing blocks. This strategy avoids implementing a full version of the core for each possible size, with the corresponding benefits in terms of scaling and adaptation time, as well as bitstream storage memory requirements. Instead of providing specific-purpose architectures, generic architectural templates, which can be tuned to solve different problems, are proposed in this thesis. Architectures following both systolic and wavefront templates have been selected. Together with the proposed scalable architectural templates, other issues needed to ensure the proper design and operation of the scalable cores, such as the device reconfiguration control, the run-time management of the architecture and the implementation techniques have been also addressed in this thesis. With regard to the implementation of dynamically reconfigurable architectures, device dependent low-level details are addressed. Some of the aspects covered in this thesis are the area constrained routing for reconfigurable modules, or an inter-module communication strategy which does not introduce either extra delay or logic overhead. The system implementation, from the hardware description to the device configuration bitstream, has been fully automated by modifying the netlists corresponding to each of the system modules, which are previously generated using the vendor tools. This modification is therefore envisaged as a post-processing step. Based on these implementation proposals, a design tool called DREAMS (Dynamically Reconfigurable Embedded and Modular Systems) has been created, including a graphic user interface. The tool has specific features to cope with modular and regular architectures, including the support for module relocation and the inter-module communications scheme based on the symmetry of the architecture. The core of the tool is a custom router, which has been also exploited in this thesis to obtain symmetric routed nets, with the aim of enhancing the protection of critical reconfigurable circuits against side channel attacks. This is achieved by duplicating the logic with an exactly equal routing. In order to control the reconfiguration process of the FPGA, a Reconfiguration Engine suited to the specific requirements set by the proposed architectures was also proposed. Therefore, in addition to controlling the reconfiguration port, the Reconfiguration Engine has been enhanced with the online relocation ability, which allows employing a unique configuration bitstream for all the positions where the module may be placed in the device. Differently to the existing relocating solutions, which are based on bitstream parsers, the proposed approach is based on the online composition of bitstreams. This strategy allows increasing the speed of the process, while the length of partial bitstreams is also reduced. The height of the reconfigurable modules can be lower than the height of a clock region. The Reconfiguration Engine manages the merging process of the new and the existing configuration frames within each clock region. The process of scaling up and down the hardware cores also benefits from this technique. A direct link to an external memory where partial bitstreams can be stored has been also implemented. In order to accelerate the reconfiguration process, the ICAP has been overclocked over the speed reported by the manufacturer. In the case of Virtex-5, even though the maximum frequency of the ICAP is reported to be 100 MHz, valid operations at 250 MHz have been achieved, including the online relocation process. Portability of the reconfiguration solution to today's and probably, future FPGAs, has been also considered. The reconfiguration engine can be also used to inject faults in real hardware devices, and this way being able to evaluate the fault tolerance offered by the reconfigurable architectures. Faults are emulated by introducing partial bitstreams intentionally modified to provide erroneous functionality. To prove the validity and the benefits offered by the proposed architectures, two demonstration application lines have been envisaged. First, scalable architectures have been employed to develop an evolvable hardware platform with adaptability, fault tolerance and scalability properties. Second, they have been used to implement a scalable deblocking filter suited to scalable video coding. Evolvable Hardware is the use of evolutionary algorithms to design hardware in an autonomous way, exploiting the flexibility offered by reconfigurable devices. In this case, processing elements composing the architecture are selected from a presynthesized library of processing elements, according to the decisions taken by the algorithm, instead of being decided at design time. This way, the configuration of the array may change as run-time environmental conditions do, achieving autonomous control of the dynamic reconfiguration process. Thus, the self-optimization property is added to the native self-configurability of the dynamically scalable architectures. In addition, evolvable hardware adaptability inherently offers self-healing features. The proposal has proved to be self-tolerant, since it is able to self-recover from both transient and cumulative permanent faults. The proposed evolvable architecture has been used to implement noise removal image filters. Scalability has been also exploited in this application. Scalable evolvable hardware architectures allow the autonomous adaptation of the processing cores to a fluctuating amount of resources available in the system. Thus, it constitutes an example of the dynamic quality scalability tackled in this thesis. Two variants have been proposed. The first one consists in a single dynamically scalable evolvable core, and the second one contains a variable number of processing cores. Scalable video is a flexible approach for video compression, which offers scalability at different levels. Differently to non-scalable codecs, a scalable video bitstream can be decoded with different levels of quality, spatial or temporal resolutions, by discarding the undesired information. The interest in this technology has been fostered by the development of the Scalable Video Coding (SVC) standard, as an extension of H.264/AVC. In order to exploit all the flexibility offered by the standard, it is necessary to adapt the characteristics of the decoder to the requirements of each client during run-time. The use of dynamically scalable architectures is proposed in this thesis with this aim. The deblocking filter algorithm is the responsible of improving the visual perception of a reconstructed image, by smoothing blocking artifacts generated in the encoding loop. This is one of the most computationally intensive tasks of the standard, and furthermore, it is highly dependent on the selected scalability level in the decoder. Therefore, the deblocking filter has been selected as a proof of concept of the implementation of dynamically scalable architectures for video compression. The proposed architecture allows the run-time addition or removal of computational units working in parallel to change its level of parallelism, following a wavefront computational pattern. Scalable architecture is offered together with a scalable parallelization strategy at the macroblock level, such that when the size of the architecture changes, the macroblock filtering order is modified accordingly. The proposed pattern is based on the division of the macroblock processing into two independent stages, corresponding to the horizontal and vertical filtering of the blocks within the macroblock. The main contributions of this thesis are: - The use of highly parallel, modular, regular and local architectures to implement dynamically reconfigurable processing IP cores, for data intensive applications with flexibility requirements. - The use of two-dimensional mesh-type arrays as architectural templates to build dynamically reconfigurable IP cores, with a scalable footprint. The proposal consists in generic architectural templates, which can be tuned to solve different computational problems. •A design flow and a tool targeting the design of DPR systems, focused on highly parallel, modular and local architectures. - An inter-module communication strategy, which does not introduce delay or area overhead, named Virtual Borders. - A custom and flexible router to solve the routing conflicts as well as the inter-module communication problems, appearing during the design of DPR systems. - An algorithm addressing the optimization of systems composed of multiple scalable cores, which size can be decided individually, to optimize the system parameters. It is based on a model known as the multi-dimensional multi-choice Knapsack problem. - A reconfiguration engine tailored to the requirements of highly regular and modular architectures. It combines a high reconfiguration throughput with run-time module relocation capabilities, including the support for sub-clock reconfigurable regions and the replication in multiple positions. - A fault injection mechanism which takes advantage of the system reconfiguration engine, as well as the modularity of the proposed reconfigurable architectures, to evaluate the effects of transient and permanent faults in these architectures. - The demonstration of the possibilities of the architectures proposed in this thesis to implement evolvable hardware systems, while keeping a high processing throughput. - The implementation of scalable evolvable hardware systems, which are able to adapt to the fluctuation of the amount of resources available in the system, in an autonomous way. - A parallelization strategy for the H.264/AVC and SVC deblocking filter, which reduces the number of macroblock cycles needed to process the whole frame. - A dynamically scalable architecture that permits the implementation of a novel deblocking filter module, fully compliant with the H.264/AVC and SVC standards, which exploits the macroblock level parallelism of the algorithm. This document is organized in seven chapters. In the first one, an introduction to the technology framework of this thesis, specially focused on dynamic and partial reconfiguration, is provided. The need for the dynamically scalable processing architectures proposed in this work is also motivated in this chapter. In chapter 2, dynamically scalable architectures are described. Description includes most of the architectural contributions of this work. The design flow tailored to the scalable architectures, together with the DREAMs tool provided to implement them, are described in chapter 3. The reconfiguration engine is described in chapter 4. The use of the proposed scalable archtieectures to implement evolvable hardware systems is described in chapter 5, while the scalable deblocking filter is described in chapter 6. Final conclusions of this thesis, and the description of future work, are addressed in chapter 7.
Resumo:
The current approach to developing mixed-criticality sys- tems is by partitioning the hardware resources (processors, memory and I/O devices) among the different applications. Partitions are isolated from each other both in the temporal and the spatial domain, so that low-criticality applications cannot compromise other applications with a higher level of criticality in case of misbehaviour. New architectures based on many-core processors open the way to highly parallel systems in which each partition can be allocated to a set of dedicated proces- sor cores, thus simplifying partition scheduling and temporal separation. Moreover, spatial isolation can also benefit from many-core architectures, by using simpler hardware mechanisms to protect the address spaces of different applications. This paper describes an architecture for many- core embedded partitioned systems, together with some implementation advice for spatial isolation.
Resumo:
Los sistemas empotrados han sido concebidos tradicionalmente como sistemas de procesamiento específicos que realizan una tarea fija durante toda su vida útil. Para cumplir con requisitos estrictos de coste, tamaño y peso, el equipo de diseño debe optimizar su funcionamiento para condiciones muy específicas. Sin embargo, la demanda de mayor versatilidad, un funcionamiento más inteligente y, en definitiva, una mayor capacidad de procesamiento comenzaron a chocar con estas limitaciones, agravado por la incertidumbre asociada a entornos de operación cada vez más dinámicos donde comenzaban a ser desplegados progresivamente. Esto trajo como resultado una necesidad creciente de que los sistemas pudieran responder por si solos a eventos inesperados en tiempo diseño tales como: cambios en las características de los datos de entrada y el entorno del sistema en general; cambios en la propia plataforma de cómputo, por ejemplo debido a fallos o defectos de fabricación; y cambios en las propias especificaciones funcionales causados por unos objetivos del sistema dinámicos y cambiantes. Como consecuencia, la complejidad del sistema aumenta, pero a cambio se habilita progresivamente una capacidad de adaptación autónoma sin intervención humana a lo largo de la vida útil, permitiendo que tomen sus propias decisiones en tiempo de ejecución. Éstos sistemas se conocen, en general, como sistemas auto-adaptativos y tienen, entre otras características, las de auto-configuración, auto-optimización y auto-reparación. Típicamente, la parte soft de un sistema es mayoritariamente la única utilizada para proporcionar algunas capacidades de adaptación a un sistema. Sin embargo, la proporción rendimiento/potencia en dispositivos software como microprocesadores en muchas ocasiones no es adecuada para sistemas empotrados. En este escenario, el aumento resultante en la complejidad de las aplicaciones está siendo abordado parcialmente mediante un aumento en la complejidad de los dispositivos en forma de multi/many-cores; pero desafortunadamente, esto hace que el consumo de potencia también aumente. Además, la mejora en metodologías de diseño no ha sido acorde como para poder utilizar toda la capacidad de cómputo disponible proporcionada por los núcleos. Por todo ello, no se están satisfaciendo adecuadamente las demandas de cómputo que imponen las nuevas aplicaciones. La solución tradicional para mejorar la proporción rendimiento/potencia ha sido el cambio a unas especificaciones hardware, principalmente usando ASICs. Sin embargo, los costes de un ASIC son altamente prohibitivos excepto en algunos casos de producción en masa y además la naturaleza estática de su estructura complica la solución a las necesidades de adaptación. Los avances en tecnologías de fabricación han hecho que la FPGA, una vez lenta y pequeña, usada como glue logic en sistemas mayores, haya crecido hasta convertirse en un dispositivo de cómputo reconfigurable de gran potencia, con una cantidad enorme de recursos lógicos computacionales y cores hardware empotrados de procesamiento de señal y de propósito general. Sus capacidades de reconfiguración han permitido combinar la flexibilidad propia del software con el rendimiento del procesamiento en hardware, lo que tiene la potencialidad de provocar un cambio de paradigma en arquitectura de computadores, pues el hardware no puede ya ser considerado más como estático. El motivo es que como en el caso de las FPGAs basadas en tecnología SRAM, la reconfiguración parcial dinámica (DPR, Dynamic Partial Reconfiguration) es posible. Esto significa que se puede modificar (reconfigurar) un subconjunto de los recursos computacionales en tiempo de ejecución mientras el resto permanecen activos. Además, este proceso de reconfiguración puede ser ejecutado internamente por el propio dispositivo. El avance tecnológico en dispositivos hardware reconfigurables se encuentra recogido bajo el campo conocido como Computación Reconfigurable (RC, Reconfigurable Computing). Uno de los campos de aplicación más exóticos y menos convencionales que ha posibilitado la computación reconfigurable es el conocido como Hardware Evolutivo (EHW, Evolvable Hardware), en el cual se encuentra enmarcada esta tesis. La idea principal del concepto consiste en convertir hardware que es adaptable a través de reconfiguración en una entidad evolutiva sujeta a las fuerzas de un proceso evolutivo inspirado en el de las especies biológicas naturales, que guía la dirección del cambio. Es una aplicación más del campo de la Computación Evolutiva (EC, Evolutionary Computation), que comprende una serie de algoritmos de optimización global conocidos como Algoritmos Evolutivos (EA, Evolutionary Algorithms), y que son considerados como algoritmos universales de resolución de problemas. En analogía al proceso biológico de la evolución, en el hardware evolutivo el sujeto de la evolución es una población de circuitos que intenta adaptarse a su entorno mediante una adecuación progresiva generación tras generación. Los individuos pasan a ser configuraciones de circuitos en forma de bitstreams caracterizados por descripciones de circuitos reconfigurables. Seleccionando aquellos que se comportan mejor, es decir, que tienen una mejor adecuación (o fitness) después de ser evaluados, y usándolos como padres de la siguiente generación, el algoritmo evolutivo crea una nueva población hija usando operadores genéticos como la mutación y la recombinación. Según se van sucediendo generaciones, se espera que la población en conjunto se aproxime a la solución óptima al problema de encontrar una configuración del circuito adecuada que satisfaga las especificaciones. El estado de la tecnología de reconfiguración después de que la familia de FPGAs XC6200 de Xilinx fuera retirada y reemplazada por las familias Virtex a finales de los 90, supuso un gran obstáculo para el avance en hardware evolutivo; formatos de bitstream cerrados (no conocidos públicamente); dependencia de herramientas del fabricante con soporte limitado de DPR; una velocidad de reconfiguración lenta; y el hecho de que modificaciones aleatorias del bitstream pudieran resultar peligrosas para la integridad del dispositivo, son algunas de estas razones. Sin embargo, una propuesta a principios de los años 2000 permitió mantener la investigación en el campo mientras la tecnología de DPR continuaba madurando, el Circuito Virtual Reconfigurable (VRC, Virtual Reconfigurable Circuit). En esencia, un VRC en una FPGA es una capa virtual que actúa como un circuito reconfigurable de aplicación específica sobre la estructura nativa de la FPGA que reduce la complejidad del proceso reconfiguración y aumenta su velocidad (comparada con la reconfiguración nativa). Es un array de nodos computacionales especificados usando descripciones HDL estándar que define recursos reconfigurables ad-hoc: multiplexores de rutado y un conjunto de elementos de procesamiento configurables, cada uno de los cuales tiene implementadas todas las funciones requeridas, que pueden seleccionarse a través de multiplexores tal y como ocurre en una ALU de un microprocesador. Un registro grande actúa como memoria de configuración, por lo que la reconfiguración del VRC es muy rápida ya que tan sólo implica la escritura de este registro, el cual controla las señales de selección del conjunto de multiplexores. Sin embargo, esta capa virtual provoca: un incremento de área debido a la implementación simultánea de cada función en cada nodo del array más los multiplexores y un aumento del retardo debido a los multiplexores, reduciendo la frecuencia de funcionamiento máxima. La naturaleza del hardware evolutivo, capaz de optimizar su propio comportamiento computacional, le convierten en un buen candidato para avanzar en la investigación sobre sistemas auto-adaptativos. Combinar un sustrato de cómputo auto-reconfigurable capaz de ser modificado dinámicamente en tiempo de ejecución con un algoritmo empotrado que proporcione una dirección de cambio, puede ayudar a satisfacer los requisitos de adaptación autónoma de sistemas empotrados basados en FPGA. La propuesta principal de esta tesis está por tanto dirigida a contribuir a la auto-adaptación del hardware de procesamiento de sistemas empotrados basados en FPGA mediante hardware evolutivo. Esto se ha abordado considerando que el comportamiento computacional de un sistema puede ser modificado cambiando cualquiera de sus dos partes constitutivas: una estructura hard subyacente y un conjunto de parámetros soft. De esta distinción, se derivan dos lineas de trabajo. Por un lado, auto-adaptación paramétrica, y por otro auto-adaptación estructural. El objetivo perseguido en el caso de la auto-adaptación paramétrica es la implementación de técnicas de optimización evolutiva complejas en sistemas empotrados con recursos limitados para la adaptación paramétrica online de circuitos de procesamiento de señal. La aplicación seleccionada como prueba de concepto es la optimización para tipos muy específicos de imágenes de los coeficientes de los filtros de transformadas wavelet discretas (DWT, DiscreteWavelet Transform), orientada a la compresión de imágenes. Por tanto, el objetivo requerido de la evolución es una compresión adaptativa y más eficiente comparada con los procedimientos estándar. El principal reto radica en reducir la necesidad de recursos de supercomputación para el proceso de optimización propuesto en trabajos previos, de modo que se adecúe para la ejecución en sistemas empotrados. En cuanto a la auto-adaptación estructural, el objetivo de la tesis es la implementación de circuitos auto-adaptativos en sistemas evolutivos basados en FPGA mediante un uso eficiente de sus capacidades de reconfiguración nativas. En este caso, la prueba de concepto es la evolución de tareas de procesamiento de imagen tales como el filtrado de tipos desconocidos y cambiantes de ruido y la detección de bordes en la imagen. En general, el objetivo es la evolución en tiempo de ejecución de tareas de procesamiento de imagen desconocidas en tiempo de diseño (dentro de un cierto grado de complejidad). En este caso, el objetivo de la propuesta es la incorporación de DPR en EHW para evolucionar la arquitectura de un array sistólico adaptable mediante reconfiguración cuya capacidad de evolución no había sido estudiada previamente. Para conseguir los dos objetivos mencionados, esta tesis propone originalmente una plataforma evolutiva que integra un motor de adaptación (AE, Adaptation Engine), un motor de reconfiguración (RE, Reconfiguration Engine) y un motor computacional (CE, Computing Engine) adaptable. El el caso de adaptación paramétrica, la plataforma propuesta está caracterizada por: • un CE caracterizado por un núcleo de procesamiento hardware de DWT adaptable mediante registros reconfigurables que contienen los coeficientes de los filtros wavelet • un algoritmo evolutivo como AE que busca filtros wavelet candidatos a través de un proceso de optimización paramétrica desarrollado específicamente para sistemas caracterizados por recursos de procesamiento limitados • un nuevo operador de mutación simplificado para el algoritmo evolutivo utilizado, que junto con un mecanismo de evaluación rápida de filtros wavelet candidatos derivado de la literatura actual, asegura la viabilidad de la búsqueda evolutiva asociada a la adaptación de wavelets. En el caso de adaptación estructural, la plataforma propuesta toma la forma de: • un CE basado en una plantilla de array sistólico reconfigurable de 2 dimensiones compuesto de nodos de procesamiento reconfigurables • un algoritmo evolutivo como AE que busca configuraciones candidatas del array usando un conjunto de funcionalidades de procesamiento para los nodos disponible en una biblioteca accesible en tiempo de ejecución • un RE hardware que explota la capacidad de reconfiguración nativa de las FPGAs haciendo un uso eficiente de los recursos reconfigurables del dispositivo para cambiar el comportamiento del CE en tiempo de ejecución • una biblioteca de elementos de procesamiento reconfigurables caracterizada por bitstreams parciales independientes de la posición, usados como el conjunto de configuraciones disponibles para los nodos de procesamiento del array Las contribuciones principales de esta tesis se pueden resumir en la siguiente lista: • Una plataforma evolutiva basada en FPGA para la auto-adaptación paramétrica y estructural de sistemas empotrados compuesta por un motor computacional (CE), un motor de adaptación (AE) evolutivo y un motor de reconfiguración (RE). Esta plataforma se ha desarrollado y particularizado para los casos de auto-adaptación paramétrica y estructural. • En cuanto a la auto-adaptación paramétrica, las contribuciones principales son: – Un motor computacional adaptable mediante registros que permite la adaptación paramétrica de los coeficientes de una implementación hardware adaptativa de un núcleo de DWT. – Un motor de adaptación basado en un algoritmo evolutivo desarrollado específicamente para optimización numérica, aplicada a los coeficientes de filtros wavelet en sistemas empotrados con recursos limitados. – Un núcleo IP de DWT auto-adaptativo en tiempo de ejecución para sistemas empotrados que permite la optimización online del rendimiento de la transformada para compresión de imágenes en entornos específicos de despliegue, caracterizados por tipos diferentes de señal de entrada. – Un modelo software y una implementación hardware de una herramienta para la construcción evolutiva automática de transformadas wavelet específicas. • Por último, en cuanto a la auto-adaptación estructural, las contribuciones principales son: – Un motor computacional adaptable mediante reconfiguración nativa de FPGAs caracterizado por una plantilla de array sistólico en dos dimensiones de nodos de procesamiento reconfigurables. Es posible mapear diferentes tareas de cómputo en el array usando una biblioteca de elementos sencillos de procesamiento reconfigurables. – Definición de una biblioteca de elementos de procesamiento apropiada para la síntesis autónoma en tiempo de ejecución de diferentes tareas de procesamiento de imagen. – Incorporación eficiente de la reconfiguración parcial dinámica (DPR) en sistemas de hardware evolutivo, superando los principales inconvenientes de propuestas previas como los circuitos reconfigurables virtuales (VRCs). En este trabajo también se comparan originalmente los detalles de implementación de ambas propuestas. – Una plataforma tolerante a fallos, auto-curativa, que permite la recuperación funcional online en entornos peligrosos. La plataforma ha sido caracterizada desde una perspectiva de tolerancia a fallos: se proponen modelos de fallo a nivel de CLB y de elemento de procesamiento, y usando el motor de reconfiguración, se hace un análisis sistemático de fallos para un fallo en cada elemento de procesamiento y para dos fallos acumulados. – Una plataforma con calidad de filtrado dinámica que permite la adaptación online a tipos de ruido diferentes y diferentes comportamientos computacionales teniendo en cuenta los recursos de procesamiento disponibles. Por un lado, se evolucionan filtros con comportamientos no destructivos, que permiten esquemas de filtrado en cascada escalables; y por otro, también se evolucionan filtros escalables teniendo en cuenta requisitos computacionales de filtrado cambiantes dinámicamente. Este documento está organizado en cuatro partes y nueve capítulos. La primera parte contiene el capítulo 1, una introducción y motivación sobre este trabajo de tesis. A continuación, el marco de referencia en el que se enmarca esta tesis se analiza en la segunda parte: el capítulo 2 contiene una introducción a los conceptos de auto-adaptación y computación autonómica (autonomic computing) como un campo de investigación más general que el muy específico de este trabajo; el capítulo 3 introduce la computación evolutiva como la técnica para dirigir la adaptación; el capítulo 4 analiza las plataformas de computación reconfigurables como la tecnología para albergar hardware auto-adaptativo; y finalmente, el capítulo 5 define, clasifica y hace un sondeo del campo del hardware evolutivo. Seguidamente, la tercera parte de este trabajo contiene la propuesta, desarrollo y resultados obtenidos: mientras que el capítulo 6 contiene una declaración de los objetivos de la tesis y la descripción de la propuesta en su conjunto, los capítulos 7 y 8 abordan la auto-adaptación paramétrica y estructural, respectivamente. Finalmente, el capítulo 9 de la parte 4 concluye el trabajo y describe caminos de investigación futuros. ABSTRACT Embedded systems have traditionally been conceived to be specific-purpose computers with one, fixed computational task for their whole lifetime. Stringent requirements in terms of cost, size and weight forced designers to highly optimise their operation for very specific conditions. However, demands for versatility, more intelligent behaviour and, in summary, an increased computing capability began to clash with these limitations, intensified by the uncertainty associated to the more dynamic operating environments where they were progressively being deployed. This brought as a result an increasing need for systems to respond by themselves to unexpected events at design time, such as: changes in input data characteristics and system environment in general; changes in the computing platform itself, e.g., due to faults and fabrication defects; and changes in functional specifications caused by dynamically changing system objectives. As a consequence, systems complexity is increasing, but in turn, autonomous lifetime adaptation without human intervention is being progressively enabled, allowing them to take their own decisions at run-time. This type of systems is known, in general, as selfadaptive, and are able, among others, of self-configuration, self-optimisation and self-repair. Traditionally, the soft part of a system has mostly been so far the only place to provide systems with some degree of adaptation capabilities. However, the performance to power ratios of software driven devices like microprocessors are not adequate for embedded systems in many situations. In this scenario, the resulting rise in applications complexity is being partly addressed by rising devices complexity in the form of multi and many core devices; but sadly, this keeps on increasing power consumption. Besides, design methodologies have not been improved accordingly to completely leverage the available computational power from all these cores. Altogether, these factors make that the computing demands new applications pose are not being wholly satisfied. The traditional solution to improve performance to power ratios has been the switch to hardware driven specifications, mainly using ASICs. However, their costs are highly prohibitive except for some mass production cases and besidesthe static nature of its structure complicates the solution to the adaptation needs. The advancements in fabrication technologies have made that the once slow, small FPGA used as glue logic in bigger systems, had grown to be a very powerful, reconfigurable computing device with a vast amount of computational logic resources and embedded, hardened signal and general purpose processing cores. Its reconfiguration capabilities have enabled software-like flexibility to be combined with hardware-like computing performance, which has the potential to cause a paradigm shift in computer architecture since hardware cannot be considered as static anymore. This is so, since, as is the case with SRAMbased FPGAs, Dynamic Partial Reconfiguration (DPR) is possible. This means that subsets of the FPGA computational resources can now be changed (reconfigured) at run-time while the rest remains active. Besides, this reconfiguration process can be triggered internally by the device itself. This technological boost in reconfigurable hardware devices is actually covered under the field known as Reconfigurable Computing. One of the most exotic fields of application that Reconfigurable Computing has enabled is the known as Evolvable Hardware (EHW), in which this dissertation is framed. The main idea behind the concept is turning hardware that is adaptable through reconfiguration into an evolvable entity subject to the forces of an evolutionary process, inspired by that of natural, biological species, that guides the direction of change. It is yet another application of the field of Evolutionary Computation (EC), which comprises a set of global optimisation algorithms known as Evolutionary Algorithms (EAs), considered as universal problem solvers. In analogy to the biological process of evolution, in EHW the subject of evolution is a population of circuits that tries to get adapted to its surrounding environment by progressively getting better fitted to it generation after generation. Individuals become circuit configurations representing bitstreams that feature reconfigurable circuit descriptions. By selecting those that behave better, i.e., with a higher fitness value after being evaluated, and using them as parents of the following generation, the EA creates a new offspring population by using so called genetic operators like mutation and recombination. As generations succeed one another, the whole population is expected to approach to the optimum solution to the problem of finding an adequate circuit configuration that fulfils system objectives. The state of reconfiguration technology after Xilinx XC6200 FPGA family was discontinued and replaced by Virtex families in the late 90s, was a major obstacle for advancements in EHW; closed (non publicly known) bitstream formats; dependence on manufacturer tools with highly limiting support of DPR; slow speed of reconfiguration; and random bitstream modifications being potentially hazardous for device integrity, are some of these reasons. However, a proposal in the first 2000s allowed to keep investigating in this field while DPR technology kept maturing, the Virtual Reconfigurable Circuit (VRC). In essence, a VRC in an FPGA is a virtual layer acting as an application specific reconfigurable circuit on top of an FPGA fabric that reduces the complexity of the reconfiguration process and increases its speed (compared to native reconfiguration). It is an array of computational nodes specified using standard HDL descriptions that define ad-hoc reconfigurable resources; routing multiplexers and a set of configurable processing elements, each one containing all the required functions, which are selectable through functionality multiplexers as in microprocessor ALUs. A large register acts as configuration memory, so VRC reconfiguration is very fast given it only involves writing this register, which drives the selection signals of the set of multiplexers. However, large overheads are introduced by this virtual layer; an area overhead due to the simultaneous implementation of every function in every node of the array plus the multiplexers, and a delay overhead due to the multiplexers, which also reduces maximum frequency of operation. The very nature of Evolvable Hardware, able to optimise its own computational behaviour, makes it a good candidate to advance research in self-adaptive systems. Combining a selfreconfigurable computing substrate able to be dynamically changed at run-time with an embedded algorithm that provides a direction for change, can help fulfilling requirements for autonomous lifetime adaptation of FPGA-based embedded systems. The main proposal of this thesis is hence directed to contribute to autonomous self-adaptation of the underlying computational hardware of FPGA-based embedded systems by means of Evolvable Hardware. This is tackled by considering that the computational behaviour of a system can be modified by changing any of its two constituent parts: an underlying hard structure and a set of soft parameters. Two main lines of work derive from this distinction. On one side, parametric self-adaptation and, on the other side, structural self-adaptation. The goal pursued in the case of parametric self-adaptation is the implementation of complex evolutionary optimisation techniques in resource constrained embedded systems for online parameter adaptation of signal processing circuits. The application selected as proof of concept is the optimisation of Discrete Wavelet Transforms (DWT) filters coefficients for very specific types of images, oriented to image compression. Hence, adaptive and improved compression efficiency, as compared to standard techniques, is the required goal of evolution. The main quest lies in reducing the supercomputing resources reported in previous works for the optimisation process in order to make it suitable for embedded systems. Regarding structural self-adaptation, the thesis goal is the implementation of self-adaptive circuits in FPGA-based evolvable systems through an efficient use of native reconfiguration capabilities. In this case, evolution of image processing tasks such as filtering of unknown and changing types of noise and edge detection are the selected proofs of concept. In general, evolving unknown image processing behaviours (within a certain complexity range) at design time is the required goal. In this case, the mission of the proposal is the incorporation of DPR in EHW to evolve a systolic array architecture adaptable through reconfiguration whose evolvability had not been previously checked. In order to achieve the two stated goals, this thesis originally proposes an evolvable platform that integrates an Adaptation Engine (AE), a Reconfiguration Engine (RE) and an adaptable Computing Engine (CE). In the case of parametric adaptation, the proposed platform is characterised by: • a CE featuring a DWT hardware processing core adaptable through reconfigurable registers that holds wavelet filters coefficients • an evolutionary algorithm as AE that searches for candidate wavelet filters through a parametric optimisation process specifically developed for systems featured by scarce computing resources • a new, simplified mutation operator for the selected EA, that together with a fast evaluation mechanism of candidate wavelet filters derived from existing literature, assures the feasibility of the evolutionary search involved in wavelets adaptation In the case of structural adaptation, the platform proposal takes the form of: • a CE based on a reconfigurable 2D systolic array template composed of reconfigurable processing nodes • an evolutionary algorithm as AE that searches for candidate configurations of the array using a set of computational functionalities for the nodes available in a run time accessible library • a hardware RE that exploits native DPR capabilities of FPGAs and makes an efficient use of the available reconfigurable resources of the device to change the behaviour of the CE at run time • a library of reconfigurable processing elements featured by position-independent partial bitstreams used as the set of available configurations for the processing nodes of the array Main contributions of this thesis can be summarised in the following list. • An FPGA-based evolvable platform for parametric and structural self-adaptation of embedded systems composed of a Computing Engine, an evolutionary Adaptation Engine and a Reconfiguration Engine. This platform is further developed and tailored for both parametric and structural self-adaptation. • Regarding parametric self-adaptation, main contributions are: – A CE adaptable through reconfigurable registers that enables parametric adaptation of the coefficients of an adaptive hardware implementation of a DWT core. – An AE based on an Evolutionary Algorithm specifically developed for numerical optimisation applied to wavelet filter coefficients in resource constrained embedded systems. – A run-time self-adaptive DWT IP core for embedded systems that allows for online optimisation of transform performance for image compression for specific deployment environments characterised by different types of input signals. – A software model and hardware implementation of a tool for the automatic, evolutionary construction of custom wavelet transforms. • Lastly, regarding structural self-adaptation, main contributions are: – A CE adaptable through native FPGA fabric reconfiguration featured by a two dimensional systolic array template of reconfigurable processing nodes. Different processing behaviours can be automatically mapped in the array by using a library of simple reconfigurable processing elements. – Definition of a library of such processing elements suited for autonomous runtime synthesis of different image processing tasks. – Efficient incorporation of DPR in EHW systems, overcoming main drawbacks from the previous approach of virtual reconfigurable circuits. Implementation details for both approaches are also originally compared in this work. – A fault tolerant, self-healing platform that enables online functional recovery in hazardous environments. The platform has been characterised from a fault tolerance perspective: fault models at FPGA CLB level and processing elements level are proposed, and using the RE, a systematic fault analysis for one fault in every processing element and for two accumulated faults is done. – A dynamic filtering quality platform that permits on-line adaptation to different types of noise and different computing behaviours considering the available computing resources. On one side, non-destructive filters are evolved, enabling scalable cascaded filtering schemes; and on the other, size-scalable filters are also evolved considering dynamically changing computational filtering requirements. This dissertation is organized in four parts and nine chapters. First part contains chapter 1, the introduction to and motivation of this PhD work. Following, the reference framework in which this dissertation is framed is analysed in the second part: chapter 2 features an introduction to the notions of self-adaptation and autonomic computing as a more general research field to the very specific one of this work; chapter 3 introduces evolutionary computation as the technique to drive adaptation; chapter 4 analyses platforms for reconfigurable computing as the technology to hold self-adaptive hardware; and finally chapter 5 defines, classifies and surveys the field of Evolvable Hardware. Third part of the work follows, which contains the proposal, development and results obtained: while chapter 6 contains an statement of the thesis goals and the description of the proposal as a whole, chapters 7 and 8 address parametric and structural self-adaptation, respectively. Finally, chapter 9 in part 4 concludes the work and describes future research paths.
Resumo:
This paper explores potential for the RAMpage memory hierarchy to use a microkernel with a small memory footprint, in a specialized cache-speed static RAM (tightly-coupled memory, TCM). Dreamy memory is DRAM kept in low-power mode, unless referenced. Simulations show that a small microkernel suits RAMpage well, in that it achieves significantly better speed and energy gains than a standard hierarchy from adding TCM. RAMpage, in its best 128KB L2 case, gained 11% speed using TCM, and reduced energy 14%. Equivalent conventional hierarchy gains were under 1%. While 1MB L2 was significantly faster against lower-energy cases for the smaller L2, the larger SRAM's energy does not justify the speed gain. Using a 128KB L2 cache in a conventional architecture resulted in a best-case overall run time of 2.58s, compared with the best dreamy mode run time (RAMpage without context switches on misses) of 3.34s, a speed penalty of 29%. Energy in the fastest 128KB L2 case was 2.18J vs. 1.50J, a reduction of 31%. The same RAMpage configuration without dreamy mode took 2.83s as simulated, and used 2.39J, an acceptable trade-off (penalty under 10%) for being able to switch easily to a lower-energy mode.
Resumo:
Electrical energy is an essential resource for the modern world. Unfortunately, its price has almost doubled in the last decade. Furthermore, energy production is also currently one of the primary sources of pollution. These concerns are becoming more important in data-centers. As more computational power is required to serve hundreds of millions of users, bigger data-centers are becoming necessary. This results in higher electrical energy consumption. Of all the energy used in data-centers, including power distribution units, lights, and cooling, computer hardware consumes as much as 80%. Consequently, there is opportunity to make data-centers more energy efficient by designing systems with lower energy footprint. Consuming less energy is critical not only in data-centers. It is also important in mobile devices where battery-based energy is a scarce resource. Reducing the energy consumption of these devices will allow them to last longer and re-charge less frequently. Saving energy in computer systems is a challenging problem. Improving a system's energy efficiency usually comes at the cost of compromises in other areas such as performance or reliability. In the case of secondary storage, for example, spinning-down the disks to save energy can incur high latencies if they are accessed while in this state. The challenge is to be able to increase the energy efficiency while keeping the system as reliable and responsive as before. This thesis tackles the problem of improving energy efficiency in existing systems while reducing the impact on performance. First, we propose a new technique to achieve fine grained energy proportionality in multi-disk systems; Second, we design and implement an energy-efficient cache system using flash memory that increases disk idleness to save energy; Finally, we identify and explore solutions for the page fetch-before-update problem in caching systems that can: (a) control better I/O traffic to secondary storage and (b) provide critical performance improvement for energy efficient systems.
Resumo:
A large class of computational problems are characterised by frequent synchronisation, and computational requirements which change as a function of time. When such a problem is solved on a message passing multiprocessor machine [5], the combination of these characteristics leads to system performance which deteriorate in time. As the communication performance of parallel hardware steadily improves so load balance becomes a dominant factor in obtaining high parallel efficiency. Performance can be improved with periodic redistribution of computational load; however, redistribution can sometimes be very costly. We study the issue of deciding when to invoke a global load re-balancing mechanism. Such a decision policy must actively weigh the costs of remapping against the performance benefits, and should be general enough to apply automatically to a wide range of computations. This paper discusses a generic strategy for Dynamic Load Balancing (DLB) in unstructured mesh computational mechanics applications. The strategy is intended to handle varying levels of load changes throughout the run. The major issues involved in a generic dynamic load balancing scheme will be investigated together with techniques to automate the implementation of a dynamic load balancing mechanism within the Computer Aided Parallelisation Tools (CAPTools) environment, which is a semi-automatic tool for parallelisation of mesh based FORTRAN codes.
Resumo:
The last two decades have seen many exciting examples of tiny robots from a few cm3 to less than one cm3. Although individually limited, a large group of these robots has the potential to work cooperatively and accomplish complex tasks. Two examples from nature that exhibit this type of cooperation are ant and bee colonies. They have the potential to assist in applications like search and rescue, military scouting, infrastructure and equipment monitoring, nano-manufacture, and possibly medicine. Most of these applications require the high level of autonomy that has been demonstrated by large robotic platforms, such as the iRobot and Honda ASIMO. However, when robot size shrinks down, current approaches to achieve the necessary functions are no longer valid. This work focused on challenges associated with the electronics and fabrication. We addressed three major technical hurdles inherent to current approaches: 1) difficulty of compact integration; 2) need for real-time and power-efficient computations; 3) unavailability of commercial tiny actuators and motion mechanisms. The aim of this work was to provide enabling hardware technologies to achieve autonomy in tiny robots. We proposed a decentralized application-specific integrated circuit (ASIC) where each component is responsible for its own operation and autonomy to the greatest extent possible. The ASIC consists of electronics modules for the fundamental functions required to fulfill the desired autonomy: actuation, control, power supply, and sensing. The actuators and mechanisms could potentially be post-fabricated on the ASIC directly. This design makes for a modular architecture. The following components were shown to work in physical implementations or simulations: 1) a tunable motion controller for ultralow frequency actuation; 2) a nonvolatile memory and programming circuit to achieve automatic and one-time programming; 3) a high-voltage circuit with the highest reported breakdown voltage in standard 0.5 μm CMOS; 4) thermal actuators fabricated using CMOS compatible process; 5) a low-power mixed-signal computational architecture for robotic dynamics simulator; 6) a frequency-boost technique to achieve low jitter in ring oscillators. These contributions will be generally enabling for other systems with strict size and power constraints such as wireless sensor nodes.
Resumo:
After a decade evolving in the High Performance Computing arena, GPU-equipped supercomputers have con- quered the top500 and green500 lists, providing us unprecedented levels of computational power and memory bandwidth. This year, major vendors have introduced new accelerators based on 3D memory, like Xeon Phi Knights Landing by Intel and Pascal architecture by Nvidia. This paper reviews hardware features of those new HPC accelerators and unveils potential performance for scientific applications, with an emphasis on Hybrid Memory Cube (HMC) and High Bandwidth Memory (HBM) used by commercial products according to roadmaps already announced.