963 resultados para Análisis Matemático
Resumo:
Exàmens resolts de Fonaments Matemàtics de l'Enginyeria II del Grau en Enginyeria Civil de la Universitat d'Alacant dels cursos 2010-2011, 2011-2012 i 2012-2013
Resumo:
In this paper we give an example of a nonlattice self-similar fractal string such that the set of real parts of their complex dimensions has an isolated point. This proves that, in general, the set of dimensions of fractality of a fractal string is not a perfect set.
Resumo:
Let vv be a weight sequence on ZZ and let ψ,φψ,φ be complex-valued functions on ZZ such that φ(Z)⊂Zφ(Z)⊂Z. In this paper we study the boundedness, compactness and weak compactness of weighted composition operators Cψ,φCψ,φ on predual Banach spaces c0(Z,1/v)c0(Z,1/v) and dual Banach spaces ℓ∞(Z,1/v)ℓ∞(Z,1/v) of Beurling algebras ℓ1(Z,v)ℓ1(Z,v).
Resumo:
This paper shows that the conjecture of Lapidus and Van Frankenhuysen on the set of dimensions of fractality associated with a nonlattice fractal string is true in the important special case of a generic nonlattice self-similar string, but in general is false. The proof and the counterexample of this have been given by virtue of a result on exponential polynomials P(z), with real frequencies linearly independent over the rationals, that establishes a bound for the number of gaps of RP, the closure of the set of the real projections of its zeros, and the reason for which these gaps are produced.
Resumo:
This paper shows, by means of Kronecker’s theorem, the existence of infinitely many privileged regions called r -rectangles (rectangles with two semicircles of small radius r ) in the critical strip of each function Ln(z):= 1−∑nk=2kz , n≥2 , containing exactly [Tlogn2π]+1 zeros of Ln(z) , where T is the height of the r -rectangle and [⋅] represents the integer part.
Resumo:
This paper proves that every zero of any n th , n ≥ 2, partial sum of the Riemann zeta function provides a vector space of basic solutions of the functional equation f(x)+f(2x)+⋯+f(nx)=0,x∈R . The continuity of the solutions depends on the sign of the real part of each zero.
Resumo:
La WebQuest responde a una estrategia didáctica basada en la incorporación de las TIC en el aula, cuyo sustento teórico está en las corrientes constructivistas y el aprendizaje colaborativo, siendo de este modo pertinente a las directrices del EEES. En virtud de ello, nos hemos propuesto enfocar nuestras prácticas docentes aprovechando dicha estrategia didáctica y los recursos disponibles en la Web 2.0. Ahora bien, consideramos que como paso previo a la implementación de cualquier recurso TIC necesitamos tener un profundo conocimiento sobre el mismo. Es por ello que, para el desarrollo del trabajo, hemos considerado llevar a cabo un proceso gradual dividido en tres fases. La primera, centrada en la apropiación de la WebQuest como herramienta metodológica, la unificación de criterios y significados en torno al qué, al cómo y al para qué de su implementación. La segunda, focalizada en el diseño de WebQuest y la generación de espacios colaborativos de evaluación de las mismas. La tercera, enfatiza la aplicación directa de WebQuest en nuestras clases y el seguimiento de éstas con fines investigativos. En esta comunicación damos cuenta del proceso llevado a cabo en la primera fase, destacando la multidisciplinaridad que caracteriza al equipo de trabajo.
Resumo:
Las Matemáticas alcanzan mayor interés entre los ciudadanos a partir del contacto y la experimentación con la realidad cotidiana que nos rodea. Es justamente en ella donde es posible plantear actividades de índole matemático que permitan una comprensión más profunda del medio en el que vivimos y, al mismo tiempo, transmitir de forma más directa que las matemáticas son una herramienta imprescindible en nuestra vida diaria. El Campus de la Universidad de Alicante ha sido desde su creación un espacio relevante considerado en algunas ocasiones como uno de los mejores campus universitarios, no sólo de España sino también de Europa. A lo largo de una extensión de alrededor de un millón de metros cuadrados, encontramos motivos suficientes para tratas varios aspectos matemáticos que aparecen en muchos de sus edificios y recintos. En este trabajo mostraremos algunos elementos matemáticos que descubrimos a lo largo de un pequeño itinerario que hemos realizado dentro del campus. Así, el principal objetivo es el de ilustrar muchos conocimientos matemáticos de una forma amena y divertida. De esta manera, el contacto con la realidad llegará entonces a límites insospechados y nos hará, en definitiva, participar de ella e idear otra realidad matemática paralela.
Resumo:
Las matemáticas constituyen un lenguaje universal, más concretamente son fundamentales para la ciencia y la ingeniería. Más aún, podríamos decir que son no sólo la base de todo conocimiento, sino también de cualquier tipo de desarrollo científico y tecnológico. Especialmente significante resulta que la física, la astronomía o la química dependen en buena medida de ellas y que son muy útiles en las ciencias económicas y sociales o en la informática. De hecho, ciencias como la filosofía o la psicología se valen de modelos matemáticos para la resolución de sus problemas. Las matemáticas forman una ciencia lógica y deductiva, y con tal de poder extraer información acerca de ellas es indispensable conocer los objetos que se utilizan y las herramientas necesarias para manejarlos. Ahora bien, casi de forma inconsciente la primera reacción cuando se habla de matemáticas es de recelo ante una materia que para mucha gente parece incomprensible, abstracta y alejada de nuestra vida más cotidiana. En este sentido, este estudio explora la percepción que presentan nuestros estudiantes acerca de cómo las matemáticas interaccionan con nuestra vida cotidiana y cómo perciben su divulgación en las aulas o en el propio contexto por el que se mueven diariamente.
Resumo:
Contribuir a la mejora de la calidad de la enseñanza y de los resultados de aprendizaje constituye uno de los retos en el sistema universitario actual que exige un gran esfuerzo de coordinación en las acciones de investigación e innovación a desarrollar. Para alcanzar este propósito, desde el grupo de investigación EDUTIC-ADEI (VIGROB-039) de la Universidad de Alicante se ha promovido la constitución de una red docente interdepartamental e interuniversitaria que pretende investigar sobre cómo debe ser la enseñanza online que se desarrolla en el ámbito universitario. Para ello, se ha abordado el concepto de ambiente de aprendizaje en este contexto virtual con el fin de delimitar los parámetros que deben definir una enseñanza de calidad cuando hablamos de e-learning, Masive Open Online Courses [MOOCs], Personal Learning Environment [PLE], etc. La investigación, pues, ahonda en los aspectos curriculares que conforman dichos ambientes de aprendizaje online con el fin de delimitar los parámetros de una enseñanza virtual de calidad.
Resumo:
In this paper we give a new characterization of the closure of the set of the real parts of the zeros of a particular class of Dirichlet polynomials that is associated with the set of dimensions of fractality of certain fractal strings. We show, for some representative cases of nonlattice Dirichlet polynomials, that the real parts of their zeros are dense in their associated critical intervals, confirming the conjecture and the numerical experiments made by M. Lapidus and M. van Frankenhuysen in several papers.
Resumo:
This paper proves that the real projection of each simple zero of any partial sum of the Riemann zeta function ζn(s):=∑nk=11ks,n>2 , is an accumulation point of the set {Res : ζ n (s) = 0}.
Resumo:
El objetivo principal de esta red ha sido la coordinación y seguimiento de los cursos correspondientes al Grado en Matemáticas que se ha implantado en su totalidad en el presente curso académico en la Facultad de Ciencias de la Universidad de Alicante y se engloba dentro del proceso general del seguimiento de todos los títulos de la Facultad de Ciencias. La red está coordinada por la coordinadora del Grado en Matemáticas y formada por los coordinadores de cada uno de los semestres. Se pretende evidenciar los progresos del título en el desarrollo del Sistema de Garantía Interno de Calidad (SGIC), con el fin de detectar las posibles deficiencias en el proceso de implantación del grado y contribuir a sus posibles mejoras elaborando propuestas de acciones para mejorar su diseño y desarrollo.
Resumo:
Una de las estrategias didácticas digitales que se enmarca dentro de la Web 2.0 corresponde a la WebQuest, caracterizada principalmente por el uso de Internet por parte del alumnado, previo a una cuidadosa selección de enlaces realizada por el profesorado. Esta estrategia digital se sustenta teóricamente en las corrientes constructivistas y el aprendizaje colaborativo, por lo que es plenamente pertinente a los postulados del EEES, a la vez que contribuye a innovar en las prácticas docentes. En este documento se expone la segunda fase de un trabajo que empezó a desarrollarse en el curso 2013-14, y cuyo objetivo principal ha sido el diseño de WebQuests que cumplan con criterios de calidad en el marco de la Enseñanza Superior. En el diseño de estas WebQuests se ha tenido en cuenta la plena accesibilidad del alumnado y la pertinencia a las distintas disciplinas en las que se desempeñan los miembros que conforman esta Red.
Resumo:
La experiencia que los miembros de la red de divulgación matemática de la Universidad de Alicante, cuyo objetivo principal es la motivación hacia el aprendizaje de las Matemáticas por medio de actividades participativas, confirma que el desarrollo de esta labor es tremendamente importante y ha de realizarse de manera continuada en el tiempo. Este trabajo está dedicado a la descripción del diseño, elaboración, puesta en funcionamiento y valoración de una ruta-yincana matemática, destinada a un público general y organizada en el entorno de la Universidad de Alicante. La ruta-yincana está constituida por diferentes actividades relacionadas con elementos del campus en los que reconocemos cierto contenido matemático, y que fueron descritos en un trabajo presentado en jornadas anteriores. Las transiciones entre dichas actividades, que han sido clasificadas atendiendo a las siguientes ramas de las Matemáticas: Geometría, Análisis, Álgebra y Estadística, se realizan por medio de mensajes codificados. Además, presentamos las distintas iniciativas propuestas por la Facultad de Ciencias en las que esta actividad podría tener cabida.