On the Analytic Solutions of the Functional Equations w 1 f(a 1 z) + w 2 f(a 2 z) + ... + w n f(a n z) = 0
Contribuinte(s) |
Universidad de Alicante. Departamento de Matemáticas Curvas Alpha-Densas. Análisis y Geometría Local |
---|---|
Data(s) |
10/02/2016
10/02/2016
01/07/2015
|
Resumo |
In this paper, it is showed that, given an integer number n ≥ 2, each zero of an exponential polynomial of the form w1az1+w2az2+⋯+wnazn, with non-null complex numbers w 1,w 2,…,w n and a 1,a 2,…,a n , produces analytic solutions of the functional equation w 1 f(a 1 z) + w 2 f(a 2 z) + ... + w n f(a n z) = 0 on certain domains of C, which represents an extension of some existing results in the literature on this functional equation for the case of positive coefficients a j and w j. |
Identificador |
Mediterranean Journal of Mathematics. 2015, 12(3): 667-678. doi:10.1007/s00009-014-0444-8 1660-5446 (Print) 1660-5454 (Online) http://hdl.handle.net/10045/52994 10.1007/s00009-014-0444-8 |
Idioma(s) |
eng |
Publicador |
Springer Basel |
Relação |
http://dx.doi.org/10.1007/s00009-014-0444-8 |
Direitos |
© Springer Basel 2014. The final publication is available at Springer via http://dx.doi.org/10.1007/s00009-014-0444-8 info:eu-repo/semantics/openAccess |
Palavras-Chave | #Functional equations #Complex variable #Exponential polynomials #Análisis Matemático |
Tipo |
info:eu-repo/semantics/article |