On the Complex Dimensions of Nonlattice Fractal Strings in Connection with Dirichlet Polynomials


Autoria(s): Dubon, Eric; Sepulcre, Juan Matias
Contribuinte(s)

Universidad de Alicante. Departamento de Análisis Matemático

Curvas Alpha-Densas. Análisis y Geometría Local

Data(s)

05/03/2015

05/03/2015

12/03/2014

Resumo

In this paper we give a new characterization of the closure of the set of the real parts of the zeros of a particular class of Dirichlet polynomials that is associated with the set of dimensions of fractality of certain fractal strings. We show, for some representative cases of nonlattice Dirichlet polynomials, that the real parts of their zeros are dense in their associated critical intervals, confirming the conjecture and the numerical experiments made by M. Lapidus and M. van Frankenhuysen in several papers.

The second author was partially supported by Vicerrectorado de Investigación, Desarrollo e Innovación de la Universidad de Alicante under project GRE11-23.

Identificador

Experimental Mathematics. 2014, 23(1): 13-24. doi:10.1080/10586458.2013.853630

1058-6458 (Print)

1944-950X (Online)

http://hdl.handle.net/10045/45566

10.1080/10586458.2013.853630

Idioma(s)

eng

Publicador

Taylor & Francis

Relação

http://dx.doi.org/10.1080/10586458.2013.853630

Direitos

© Taylor & Francis Group, LLC

info:eu-repo/semantics/openAccess

Palavras-Chave #Dirichlet polynomials #Fractal strings #Complex dimensions of fractal strings #Set of dimensions of fractality #Zeros of entire functions #Análisis Matemático
Tipo

info:eu-repo/semantics/article