On the Complex Dimensions of Nonlattice Fractal Strings in Connection with Dirichlet Polynomials
Contribuinte(s) |
Universidad de Alicante. Departamento de Análisis Matemático Curvas Alpha-Densas. Análisis y Geometría Local |
---|---|
Data(s) |
05/03/2015
05/03/2015
12/03/2014
|
Resumo |
In this paper we give a new characterization of the closure of the set of the real parts of the zeros of a particular class of Dirichlet polynomials that is associated with the set of dimensions of fractality of certain fractal strings. We show, for some representative cases of nonlattice Dirichlet polynomials, that the real parts of their zeros are dense in their associated critical intervals, confirming the conjecture and the numerical experiments made by M. Lapidus and M. van Frankenhuysen in several papers. The second author was partially supported by Vicerrectorado de Investigación, Desarrollo e Innovación de la Universidad de Alicante under project GRE11-23. |
Identificador |
Experimental Mathematics. 2014, 23(1): 13-24. doi:10.1080/10586458.2013.853630 1058-6458 (Print) 1944-950X (Online) http://hdl.handle.net/10045/45566 10.1080/10586458.2013.853630 |
Idioma(s) |
eng |
Publicador |
Taylor & Francis |
Relação |
http://dx.doi.org/10.1080/10586458.2013.853630 |
Direitos |
© Taylor & Francis Group, LLC info:eu-repo/semantics/openAccess |
Palavras-Chave | #Dirichlet polynomials #Fractal strings #Complex dimensions of fractal strings #Set of dimensions of fractality #Zeros of entire functions #Análisis Matemático |
Tipo |
info:eu-repo/semantics/article |