998 resultados para cascade imaging amplification
Resumo:
We present a detailed study of lambda similar to 9.75 mu m GaAs/AIGaAs quantum cascade lasers. For a coated 2-mm-long and 40-mu m-wide laser, an optical power of 85 mu W is observed 95% duty cycle at 80 K. At a moderate driving pulse (1 kHz and 1% duty cycle), the device presents a peak power more than 20 mW even at 120 K. At 80 K, the fitted result of threshold current densities shows evidence of potential cw operation.
Resumo:
We report on the realization of GaAs/AlGaAs quantum cascade lasers with an emission wavelength of 9.1 mu m above the liquid nitrogen temperature. With optimal current injection window and ridge width of 24 and 60 mu m respectively, a peak output power more than 500 mW is achieved in pulsed mode operation. A low threshold current density J(th) = 2.6 kA/cm(2) gives the devices good lasing characteristics. In a drive frequency of 1 kHz, the laser operates up to 20% duty cycle.
Resumo:
Quasi-continuous-wave operation of GaAs/AlGaAs quantum-cascade lasers with high average optical power is demonstrated. Double X-ray diffraction has been used to investigate the quality of the epitaxial material. The compositional gradients and the interface quality are controlled effectively. The corrected average power of per facet about 17 mW and temperature tuning coefficient of the gain peak about 0.91 nm/K from 83 K to 140 K is achieved in pulse operation. Best value of threshold current density is less than 3.0 kA/cm(2) at 83 K. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
By optimizing the molecule beam epitaxy growth condition, the quality of quantum cascade (QC) material has greatly been improved. The spectrum of double x-ray diffraction indicates that the interface between the constituent layers is very smooth, the lattice mismatch between the epilayer and the substrate is less than 0.1%, and the periodicity fluctuation of the active region is not more than 4.2%. The QC laser with the emission wavelength of about 5.1 mum is operated at the threshold of 0.73 kA/cm(2) at liquid nitrogen temperature with the repetition rate of 10kHz and at a duty cycle of 1%. Meanwhile, the performance of the laser can be improved with suitable post process techniques such as the metallic ohmic contact technology.
Resumo:
Double X-ray diffraction has been used to investigate InGaAs/InAlAs quantum cascade (QC) laser grown on InP substrate by molecule beam epitaxy, by means of which, excellent lattice matching, the interface smoothness, the uniformity of the thickness and the composition of the epilayer are disclosed. What is more, these results are in good agreement with designed value. The largest lattice mismatch is within 0.18% and the intersubband absorption wavelength between two quantized energy levels is achieved at about lambda = 5.1 mum at room temperature. At 77 K, the threshold density of the QC laser is less than 2.6 kA/cm(2) when the repetition rate is 5 kHz and the duty cycle is 1%. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
X-ray diffraction, as an effective probe and simple method, is used to ascertain the precise control of the epilayer thickness and composition. Intersubband absorption from the whole structure of the QC laser is used to monitor the wavelength of the QC laser and the material quality. Path for growth of high-quality InP-based InGaAs/InAlAs quantum cascade laser material is realized. The absorption between two quantized energy levels is achieved at similar to4.7 mum. Room temperature laser action is achieved at lambda approximate to 5.1 - 5.2 mum. For some devices, if the peak output power is kept at 2 mW, quasi-continuous wave operation at room temperature can persist for more than I It. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The growth and characterization of quantum cascade (QC) lasers based on InGaAs/InAlAs material system are investigated. Pronounced intersubband absorption from stacked active region of QC structure is used to monitor the wavelength of QC laser and disclose the material quality. The precise control of the epilayer thickness and the good quality of interfaces are demonstrated by the abundant narrow satellite peaks of X-ray diffraction. Laser action in quasi-continuous wave operation is achieved at lambda approximate to 5.1-5.2 mum up to 300 K. For 10 x 800 mum(2) laser device, peak output power of similar to7.2 mW and threshold current density of 3 kA/cm(2) at room temperature are obtained. For some devices, if keep the peak output powers at the similar to2 mW level, quasi-continuous wave operation at room temperature persists more than 1 h are recorded. (Q) (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The preparation and main characteristics of the InGaAs/InAlAs quantum cascade laser were given. The device has a reinforced ridge waveguide structure. The threshold current obtained at 80K is about 0. 5A, and the corresponding threshold current density is about 5kA/cm(2).
Resumo:
Quantum cascade (QC) lasers based on strain-compensated InxGa(1-x)As/InyAl(1-y)As grown on InP substrate using molecular beam epitaxy is reported. The epitaxial quality is demonstrated by the abundant narrow satellite peaks of double-crystal X-ray diffraction and cross-section transmission electron microscopy of the QC laser wafer. Laser action in quasi-continuous wave operation is achieved at lambda approximate to 3.6-3.7 mum at room temperature (34 degreesC) for 20 mum x 1.6 mm devices, with peak output powers of similar to 10.6mW and threshold current density of 2.7kA/cm(2) at this temperature. (C) 2000 Published by Elsevier Science B.V.
Resumo:
We report on the realization of quantum cascade (QC) lasers based on strain-compensated InxGa(1-x)As/In(y)A((1-y))As grown on InP substrates using molecular beam epitaxy. X-ray diffraction and cross section transmission electron microscopy have been used to ascertain the quality of the QC laser materials. Quasi-continuous wave lasing at lambda approximate to 3.54-3.7 mum at room temperature was achieved. For a laser with 1.6 mm cavity length and 20 mum ridge-waveguide width,quasi-continuous wave lasing at 34 degreesC persists for more than 30 min, with a maximum power of 11.4 mW and threshold current density of 1.2 kA cm(-2), both record values for QC lasers of comparable wavelength.
Resumo:
A short wavelength (lambda similar or equal to 3.5 mu m) strain-compensated InxGa(1-x)As/InyAl(1-y)As quantum cascade laser is reported. Quasi-continuous wave operation of this device at 34 degrees C with an output power of 11.4mW persisted for more than 30 minutes without obvious degradation. A very low threshold current density of 1.2KA/cm(2) at this temperature was observed.
Resumo:
In this paper, we propose an n-type vertical transition bound-to-continuum Ge/SiGe quantum cascade structure utilizing electronic quantum wells in the L and Gamma valleys of the Ge layers. The optical transition levels are located in the quantum wells in the L valley. The Gamma-L intervalley scattering is used to depopulate the lower level and inject the electrons into the upper level. We also show that high quality Si1-yGey pseudosubstrate is obtained by thermal annealing of Si1-xGex/Ge/Si structure. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
High-power strain-compensated In1-xGaxAs/ln(1-y)Al(y)As quantum cascade lasers (lambda similar to 5.5 mu m) are demonstrated. Peak power at least 1.2W per facet for a 32 mu mx2mm uncoated laser stored in ambient condition for 240 days, is obtained at 80 K. Considering the collection efficiency of 60%, the actual output power is 4W at this temperature.
Resumo:
An enhanced technique for interrogating fiber Bragg grating wavelength shift using cascade wavelength division multiplexer (WDM) couplers was proposed and demonstrated. Three WDM couplers which show a linear filter function over the expected wavelength range are employed and cascaded to track Bragg wavelength shifts. Compared with single WDM demodulator. sharper spectral slope is obtained and considerable linear filter range is kept. The static and dynamic strain sensor demodulation experiments demonstrated that the simple passive technique improves the sensitivity approximately two times and keeps 5nm linear demodulation range based on our devices. The cascade WDM coupler demodulation system has high scan rate which can be used to monitor fast vibration.