969 resultados para Solid-phase peptide synthesis
Resumo:
A rapid and simple method was optimized for determination of Delta(9)-tetrahydrocannabinol (Delta(9)-THC), cannabidiol (CBD), and cannabinol (CBN) contents in cannabis products by gas chromatography with flame-ionization detection (GC-FID), using diazepam as internal standard. All parameters of validation of the method such as linearity, intraassay precision, and limits of detection and quantification of the analytes were satisfactory. Using the described method, cannabinoid contents of 55 cannabis product samples seized in Sao Paulo City, Brazil, in 2006 and 2007 were measured. Delta(9)-THC content in marijuana and hashish samples varied between 0.08% and 5.5%, with an average of 2.5%. The phenotypic ratio showed that the products were able to be designated as ""drug type.""
Resumo:
The extensive use of antineoplastic agents in chemotherapy may be at risk to health care workers involved in the preparation and administration of these drugs. In this study cyclophosphamide, a drug classified as a human carcinogen, was quantified by adapting a previous analytical method using gas chromatography coupled to mass spectrometry (GC-MS) after solid phase extraction with diatomaceous earth. The drug was measured by analysis in surfaces (wipe samples) and gloves, collected from four different hospitals, before and after the practice of cleaning procedures, and the use of a closed-system device for the preparation and administration. Validation results were satisfactory and cyclophosphamide levels ranging from below the quantification limit to 141000 ng. Our findings demonstrated that surfaces and materials contamination was found in all hospitals during the traditional open technique for preparation and administration of cyclophosphamide and a significant reduction in contamination when a closed-system device was used. However, some values were considered unexpected, especially those obtained from samples collected after the cleaning surfaces.
Resumo:
A nuclear magnetic resonance ((1)H NMR) method for the determination of beta-N-methylamino-L-alanine (L-BMAA) in environmental aqueous samples was developed and validated. L-BMAA is a neurotoxic modified amino acid that can be produced by cyanobacteria in aqueous environments. This toxin was extracted from samples by means of solid-phase extraction (SPE) and identified and quantified by (1)H NMR without further derivatization steps. The lower limit of quantification (LLOQ) was 5 mu g/mL Good inter and intra-assay precision was also observed (relative standard deviation <8.5%) with the use of 4-nitro-DL-phenylalanine as an internal standard (IS). This method of 1H NMR analysis is not time consuming and can be readily utilized to monitor L-BMAA and confirm its presence in environmental and biological samples. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Introduction - Ayahuasca is obtained by infusing the pounded stems of Banisteriopsis caapi in combination with the leaves of Psychotria viridis. P. viridis is rich in the psychedelic indole N,N-dimethyltryptamine, whereas B. caapi contains substantial amounts of beta-carboline alkaloids, mainly harmine, harmaline and tetrahydroharmine, which are monoamine-oxidase inhibitors. Because of differences in composition in ayahuasca preparations, a method to measure their main active constituents is needed. Objective - To develop a gas chromatographic method for the simultaneous determination of dimethyltryptamine and the main beta-carbolines found in ayahuasca preparations. Methodology - The alkaloids were extracted by means of solid phase extraction (C(18)) and detected by gas chromatography with nitrogen/phosphorous detector. Results - The lower limit of quantification (LLOQ) was 0.02 mg/mL for all analytes. The calibration curves were linear over a concentration range of 0.02-4.0 mg/mL (r(2) > 0.99). The method was also precise (RSD < 10%). Conclusion - A simple gas chromatographic method to determine the main alkaloids found in ayahuasca was developed and validated. The method can be useful to estimate administered doses in animals and humans for further pharmacological and toxicological investigations of ayahuasca. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
The purpose of this study was to evaluate bioequivalence of two commercial 8 mg tablet formulations of ondansetrona available ill the Brazilian market. In this study, a simple, rapid, sensitive and selective liquid chromarography-tandem mass spectrometry method is described for the determination of ondansetron in human plasma samples. The method was validated over a concentration range of 2.5-60 ng/ml and used in a bioequivalence trial between orally disintegrating and conventional tablet ondansetron formulations, to assess its usefulness in this kind of Study. Vonau flash (R) (Biolab Sanus Farmaceutica, Brazil, as test formulations) and Zofran (R) (GlaxoSmithKline, Brazil, as reference formulation) were evaluated following a single 8 mg close to 23 healthy volunteers of both genders. The dose was administered after an overnight fast according to a two-way crossover design. Bioequivalence between the products was determinated by Calculating 90% confidence interval (90% CI) for the ratio of C(max), AUC(0-t) and AUC(0-(sic)) values for the test and reference products, using logarithmically transformed data. The 90% confidence interval for the ratio of C(max) (87.5-103.8%), AUC(0-t) (89.3-107.2%) and AUC(0--(sic)) (89.7-106.0%) values for the test and reference products is Within the 80-125% interval, proposed by FDA, EMEA and ANVISA. It was concluded that two ondansetron formulations are bioequivalent ill their rate and extent of absorption. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The flavone C-glucoside, vicenin-2, in semi-purified extracts of the leaves of Lychnophora ericoides was quantified in rat plasma samples using a method based on reversed-phase high performance liquid chromatography coupled to tandem mass spectrometry. Vicenin-2 was analyzed on a LiChrospher (R) RP18 column using an isocratic mobile phase consisting of a mixture of methanol: water (30:70, v/v) plus 2.0% glacial acetic acid at a flow rate of 0.8 mL min(-1). Genistein was used as internal standard. The mass spectrometer was operated in positive ionization mode and analytes were quantified by multiple reaction monitoring at m/z 595 > 457 for vicenin-2 and m/z 271 > 153 for internal standard. Prior to the analysis, each rat plasma sample was acidified with 200 mu L of 50 mmol L(-1) acetic acid solution and extracted by solid-phase extraction using a C18 cartridge. The absolute recoveries were reproducible and the coefficients of variation values were lower than 5.2%. The method was linear over the 12.5 - 1500 ng mL(-1) concentration range and the quantification limit was 12.5 ng mL(-1). Within-day and between-day assay precision and accuracy were studied at three concentration levels (40, 400 and 800 ng mL(-1)) and were lower than 15%. The developed and validated method seems to be suitable for analysis of vicenin-2 in plasma samples obtained from rats that receive a single i.p. dose of 200 mg kg(-1) vicenin-2 extract.
Resumo:
Catalytic activities and deactivation characteristics of oxides-supported nickel catalysts for the reaction of methane reforming with carbon dioxide were investigated. The dynamic carbon deposition on various nickel catalysts was also studied by a thermogravimetric method. Among the catalysts prepared, Ni/La2O3, Ni/alpha-Al2O3, Ni/SiO2, and Ni/CeO2 showed very high CH4 and CO2 conversions and moderate deactivation whereas Ni/MgO and Ni/TiO2 had lower conversions when the Ni reduction was conducted at 500 degrees C. When Ni/MgO catalyst was reduced at 800 degrees C, it exhibited not only comparable conversions of CH4 and CO2 with other active catalysts but also much longer period of stability without deactivation. The amount of carbon deposited in Ni-based catalysts varied depending on the nature of support and followed the order of Ni/La2O3 > Ni/alpha-Al2O3 > Ni/SiO2 > Ni/MgO > Ni/CeO2 at 700 degrees C. The carbons formed on the catalyst surface showed different structural and chemical properties, and these in turn affected the catalytic activity of the catalysts.
Resumo:
Mycophenolic acid is an immunosuppressant administered as a bioavailable ester, mycophenolate mofetil. The pharmacokinetics of mycophenolic acid have been reported to be variable. Accurate measurement of concentrations of this drug could be important to adjust doses. The aim of this study was to compare the enzyme-multiplied immunoassay technique (EMIT [Dade Behring; San Jose, CA, U.S.A.]) for mycophenolic acid with a high-performance liquid chromatographic (HPLC) assay using samples collected from renal transplant recipients. The HPLC assay used solid phase extraction and a C18 stationary phase with ultraviolet (UV) detection (254 nm). The immunoassay required no manual sample preparation. Plasma samples (n = 102) from seven patients, collected at various times after a dose, were analyzed using both methods. Both assays fulfilled quality-control criteria. Higher concentrations were consistently measured in patient samples when using EMIT. The mean (+/- standard deviation [SD]) bias (EMIT-HPLC) was 1.88 +/- 0.86 mg/L. The differences in concentrations were higher in the middle of a dosage interval, suggesting that a metabolite might have been responsible for overestimation. Measurement of glucuronide concentrations by HPLC demonstrated only a weak correlation between assay differences and glucuronide concentrations. If the crossreacting substance is active, EMIT could provide a superior measure of immunosuppression; if inactive, further work is needed to improve antibody specificity. In conclusion, it was found that EMIT overestimates the concentration of mycophenolic acid in plasma samples from renal transplant recipients compared with HPLC analysis.
Resumo:
A sensitive high-performance liquid chromatographic assay has been developed for measuring plasma concentrations of methotrexate and its major metabolite, 7-hydroxymethotrexate. Methotrexate and metabolite were extracted from plasma using solid-phase extraction. An internal standard, aminopterin was used. Chromatographic separation was achieved using a 15-cm poly(styrene-divinylbenzene) (PRP-1(R)) column. This column is more robust than a silica-based stationary phase. Post column, the eluent was irradiated with UV light, producing fluorescent photolytic degradation products of methotrexate and the metabolite. The excitation and emission wavelengths of fluorescence detection were at 350 and 435 nm, respectively. The mobile phase consisted of 0.1 M phosphate buffer (pH 6.5), with 6% N,N-dimethylformamide and 0.2% of 30% hydrogen peroxide. The absolute recoveries for methotrexate and 7-hydroxymethotrexate were greater than 86%. Precision, expressed as a coefficient of variation (n=6), was
Resumo:
To facilitate the investigation of free mycophenolic acid concentrations we developed a high-performance liquid chromatography tandem mass spectrometry method using indomethacin as an internal standard. Free drug was isolated from plasma samples (500 mul) using ultrafiltration, The analytes were extracted from the ultrafiltrate (200 mul) using C-18 solid-phase extraction. Detection was by selected reactant monitoring of mycophenolic acid (m/z 318.9-->190.9) and the internal standard (m/z 356.0-->297.1) with an atmospheric pressure chemical ionisation interface. The total chromatographic analysis time was 12 min. The method was found to be linear over the range investigated, 2.5-200 mug/l (r>0.990, n=6). The relative recovery of the method for the control samples studied (7.5, 40.0 and 150 mug/l) ranged from 95 to 104%. The imprecision of the method, expressed in terms of intra- and inter-day coefficients of variation, was
Resumo:
Cylindrospermopsis raciborskii is a bloom-forming cyanobacterium found in both tropical and temperate climates which produces cylindrospermopsin, a potent hepatotoxic secondary metabolite. This organism is notorious for its association with a significant human poisoning incident on Palm Island, Australia, which resulted in the hospitalization of 148 people. We have screened 13 C. raciborskii isolates from various regions of Australia and shown that both toxic and nontoxic strains exist within this species. No association was observed between geographical origin and toxin production. Polyketide synthases (PKSs) and peptide synthetases (PSs) are enzymes involved in secondary metabolite biosynthesis in cyanobacteria. Putative PKS and PS genes from C. raciborskii strains AWT205 and CYPO2OB were identified by PCR using degenerate primers based on conserved regions within each gene. Examination of the strain-specific distribution of the PKS and PS genes in C. raciborskii isolates demonstrated a direct link between the presence of these two genes and the ability to produce cylindrospermopsin. Interestingly, the possession of these two genes was also linked. They were also identified in an Anabaena bergii isolate that was demonstrated to produce cylindrospermopsin. Taken together, these data suggest a likely role for these determinants in secondary metabolite and toxin production by C. raciborskii. (C) 2001 John Wiley & Sons, Inc.
Resumo:
Monosaccharides provide an excellent platform to tailor molecular diversity by appending desired substituents at selected positions around the sugar scaffold. The presence of five functionalized and stereo-controlled centres on the sugar scaffolds gives the chemist plenty of scope to custom design molecules to a pharmacophore model. This review focuses on the peptidomimetic developments in this area, as well as the concept of tailoring structural and functional diversity in a library using carbohydrate scaffolds and how this can lead to increased hit rates and rapid identification of leads, which has promising prospects for drug development.
Resumo:
BACKGROUND: Understanding the excretion of 3,4-methylenedioxymethamphetamine (MDMA) and metabolites in sweat is vital for interpretation of sweat tests in drug treatment, criminal justice, and workplace programs. METHODS: Placebo, low (1.0 mg/kg), and high (1.6 mg/kg) doses of oral MDMA were given double-blind in random order to healthy volunteers (n = 15) with histories of MDMA use. Participants resided on the closed clinical research unit for up to 7 days after each dose. Volunteers wore PharmChek (R) sweat patches (n = 640) before, during, and after controlled dosing. Patches were analyzed by solid phase extraction and GC-MS for MDMA, methylenedioxyamphetamine (MDA), 4-hydroxy-3-methoxyamphetamine (HMA), and 4hydroxy-3-methoxymethamphetamine (HMMA). Limits of quantification (LOQ) were 2.5 ng/patch for MDMA and 5 ng/patch for HMA, HMMA, and MDA. RESULTS: MDMA was the primary analyte detected in 382 patches (59.7%), with concentrations up to 3007 ng/patch. MDA was detected in 188 patches (29.4%) at <172 ng/patch, whereas no HMMA or HMA was detected; 224 patches (35.0%) and 60 patches (9.4%) were positive for MDMA and MDA, respectively, at the 25-ng/patch threshold proposed by the Substance Abuse and Mental Health Services Administration. CONCLUSIONS: Sweat testing was shown to be an effective and reliable method for monitoring MDMA use in this controlled MDMA administration study. However, variability in sweat excretion suggests that results should be interpreted qualitatively rather than quantitatively. These data provide a scientific database for interpretation of MDMA sweat test results. (C) 2008 American Association for Clinical Chemistry
Resumo:
A sensitive and reproducible stir bar-sorptive extraction and high-performance liquid chromatography-UV detection (SBSE/HPLC-UV) method for therapeutic drug monitoring of carbamazepine, carbamazepine-10,11-epoxide, phenytoin and phenobarbital in plasma samples is described and compared with a liquid:liquid extraction (LLE/HPLC-UV) method. Important factors in the optimization of SBSE efficiency such as pH, extraction time and desorption conditions (solvents, mode magnetic stir, mode ultrasonic stir, time and number of steps) assured recoveries ranging from 72 to 86%, except for phenytoin (62%). Separation was obtained using a reverse phase C-18 column with UV detection (210 nm). The mobile phase consisted of water: acetonitrile (78:22, v/v). The SBSE/HPLC-UV method was linear over a working range of 0.08-40.0 mu g mL(-1) for carbamazepine, carbamazepine-10,11-epoxide and phenobarbital and 0.125-40.0 mu g mL(-1) for phenytoin, The intra-assay and inter-assay precision and accuracy were studied at three concentrations (1.0, 4.0 and 20.0 mu g mL(-1)). The intra-assay coefficients of variation (CVs) for all compounds were less than 8.8% and all inter-CVs were less than 10%. Limits of quantification were 0.08 mu g mL(-1) for carbamazepine, carbamazepine-10,11-epoxide and phenobarbital and 0.125 mu g mL(-1) for phenytoin. No interference of the drugs normally associated with antiepileptic drugs was observed. Based on figures of merit results, the SBSE/HPLC-UV proved adequate for antiepileptic drugs analyses from therapeutic levels. This method was successfully applied to the analysis of real samples and was as effective as the LLE/HPLC-UV method. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Alcohols and acids can be switched to produce ethers or esters by varying the alcohol to catalyst mol ratio, in a new etherification and esterification method using NbCl5/Al2O3 catalyst under ""solvent free"" conditions and promoted by MW (microwave) irradiation. A ""two sites"" mechanism for the reaction is proposed, in an attempt to clarify the tendency of the catalyst to be dependent on the alcohol alone during the esterification process. (c) 2008 Elsevier B.V. All rights reserved.