974 resultados para Semiconducting gallium arsenide
Resumo:
Molecular beam epitaxy-grown self-assembled In(Ga)As/GaAs and InAs/InAlAs/InP quantum dots (QDs) and quantum wires (QWRs) have been studied. By adjusting growth conditions, surprising alignment. preferential elongation, and pronounced sequential coalescence of dots and wires under specific condition are realized. The lateral ordering of QDs and the vertical anti-correlation of QWRs are theoretically discussed. Room-temperature (RT) continuous-wave (CW) lasing at the wavelength of 960 nm with output power of 3.6 W from both uncoated facets is achieved fi-om vertical coupled InAs/GaAs QDs ensemble. The RT threshold current density is 218 A/cm(2). A RT CW output power of 0.6 W/facet ensures at least 3570 h lasing (only drops 0.83 dB). (C) 2001 Elsevier Science B.V, All rights reserved.
Resumo:
Cubic GaN(c-GaN) films are grown on GaAs(001) substrates by metalorganic chemical vapor deposition (MOCVD). Two GaN samples were grown with different buffer layer, the deposition time of each was 1 and 3 min, respectively. 4-circle X-ray double crystal diffraction (XRDCD) was used to study the secondary crystallographic phases presented in the c-GaN films. The phase composition of the epilayers was determined by X-ray reciprocal space mapping. The intensities of the c-GaN(002) and h-GaN(10 (1) over bar 1) planes detected in the mapping were investigated by omega scans. The content of the hexagonal phase inclusions in the c-GaN films was calculated to about 1.6 and 7.9%, respectively. The thicker buffer layer is not preferable for growing high quality pure c-GaN films. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
We use nuclear reaction analysis to study hydrogen in unintentionally doped GaN, and high-concentration hydrogen, nearly 10(21) cm(-3), is detected. Accordingly, a broad but intense infrared absorption zone with a peak at 2962 cm(-1) is reported, which is tentatively assigned to the stretch mode of NH: Ga complex. The complex is assumed to be one candidate answering for background electrons in unintentionally doped GaN. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
We report on the epitaxial growth and the microstructure of cubic GaN. The layers are deposited by plasma-assisted molecular beam epitaxy on GaAs and Si substrates. Despite the extreme lattice mismatch between these materials, GaN grows in the metastable cubic phase with a well-defined orientation-relationship to the GaAs substrate including a sharp heteroboundary. The preference of the metastable phase and its epitaxial orientation originates in the interface structure which is found to be governed by a coincidence site lattice.
Resumo:
An electrically bistable device has been fabricated using nanocomposite films consisting of silver nanoparticles and a semiconducting polymer by a simple spin-coating method. The current-voltage characteristics of the as-fabricated devices exhibit an obvious electrical bistability and negative differential resistance effect. The current ratio between the high-conducting state and low-conducting state can reach more than 103 at room temperature. The electrical bistability of the device is attributed to the electric-filed-induced charge transfer between the silver nanoparticles and the polymer, and the negative differential resistance behavior is related to the charge trapping in the silver nanoparticles. The results open up a simple approach to fabricate high quality electrically bistable devices by doping metal nanoparticles into polymer.
Resumo:
Surface damage of gallium nitride films irradiated by Arq+ (6 ≤ q ≤ 16) ions at room temperature is studied by the atomic force microscopy. It is found that when charge state exceeds a threshold value, significant swelling was turned into obvious erosion in the irradiated region. The surface change of the irradiated region strongly depends on the charge state and ion fluence. On the other hand, surface change is less dependent on the kinetic energy nearly in the present experimental range (120 keV≤ Ek ≤ 220 keV). For q ≤ 14, surface of the irradiated region iscovered with an amorphous layer, rough and bulgy. A step-up appears between the irradiated and un-irradiated region. Moreover, the step height and the surface roughness are functions of the ion dose and charge state...
Resumo:
Surface change of gallium nitride specimens after bombardment by highly charged Pbq+-ions (q = 25, 35) at room temperature is studied by means of atomic force microscopy. The experimental results reveal that the surface of GaN specimens is significantly etched and erased. An unambiguous step-up is observed. The erosion depth not only strongly depends on the charge state of ions, but also is related to the incident angle of Pbq+-ions and the ion dose. The erosion depth of the specimens in 60 incidence (tilted incidence) is significantly deeper than that of the normal incidence. The erosion behaviour of specimens has little dependence on the kinetic energy of ion (E-k = 360, 700 keV). On the other hand, surface roughness of the irradiated area is obviously decreased due to erosion compared with the un-irradiated area. A fiat terrace is formed.
Resumo:
介绍了嵌入式处理器JUPITER,详细分析了uClinux嵌入式操作系统的特点。给出了基于JUPITER和uClinux的嵌入式网关。通过嵌入式网关实例详细说明了在JUPITER上的移植uClinux的方法,以及uClinux下应用程序的开发。
Resumo:
White light emission from amplified spontaneous emission (ASE) was realized by optically pumping fluorescent dye 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped semiconducting poly(9,9-dioctylfluorene) (PFO) polymer thin films. Two individual ASE peaks originating from DCJTB and PFO were observed by carefully controlling the DCJTB concentration in PFO. The studies of the ASE characteristics of DCJTB:PFO thin films lead to the conclusion that the DCJTB:PFO system with 0.3% w/w DCJTB dopant concentration in PFO showed the best ASE performance.
Resumo:
We report single mode and multimodes lasing emission from conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) doped polystyrene ( PS) thin films with surface ripples. Surface ripples were formed by water vapour-induced phase separation. A single mode lasing emission at 606 nm with a line-width of less than 0.4 nm was obtained. The laser threshold was as low as 3.5 mu J pulse(-1). The side mode suppression ratio was 5.76 dB. The periodic changes of the refraction index in the MEH-PPV : PS blending film due to the phase separation should be attributed to the lasing actions.
Resumo:
We demonstrate a low threshold polymer solid state thin-film distributed feedback (DFB) laser on an InP substrate with the DFB structure. The used gain medium is conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) doped polystyrene (PS) and formed by drop-coating method. The second order Bragg scattering region on the InP substrate gave rise to strong feedback, thus a lasing emission at 638.9nm with a line width of 1.2nm is realized when pumped by a 532nm frequency-doubled Nd: YAG pulsed laser. The devices show a laser threshold as low as 7 nJ/pulse.
Resumo:
Uniform Gd(OH)(3) nanotubes have been prepared via a simple wet-chemical route at ambient pressure and low temperature, without any catalysts, templates, or substrates, in which Gd(NO3)(3) was used as the gallium source and ammonia as the alkali. SEM and TEM images indicate that the as-obtained Gd(OH)3 entirely consists of uniform nanotubes in high yield with diameters of about 40 nm and lengths of 200-300 nm. The temperature-dependent morphological evolution and the formation mechanism of the Gd(OH)(3) nanotubes were investigated in detail. Furthermore, the Gd2O3 and Eu3+-doped Gd2O3 nanotubes, which inherit their parents' morphology, were obtained during a direct annealing process in air. The corresponding Gd2O3:Eu3+ nanotubes exhibit the strong red emission corresponding to the D-5(0)-F-7(2), transition of the Eu3+ ions under UV light or low-voltage electron beam excitation, which might find potential applications in the fields such as light-emitting phosphors, advanced flat panel displays, or biological labeling.
Resumo:
Trivalent dysprosium (Dy3+)-activated beta-gallium oxide (beta-Ga2O3) phosphors were synthesized by solid-state (SS), coprecipitation (CP), and citrate gel (CG) methods, respectively. The resulting beta-Ga2O3:Dy3+ phosphors were well characterized by X-ray diffraction, field-emission scanning electron microscopy (FESEM), and by photoluminescence and cathodoluminescence spectra. The phosphors prepared by different methods show different luminescence properties under the excitation of UV and low-voltage cathode rays. There exists an energy transfer from the beta-Ga2O3 host lattices to Dy3+, and the energy transfer efficiency was higher in the CG-derived phosphors than those of the SS- and CP-derived phosphors. Factors influencing the intensity of luminescence and the energy transfer efficiency from beta-Ga2O3 host to Dy3+ in beta-Ga2O3:Dy3+ phosphors were investigated in detail. It is shown that the CG method is the most respected process for the preparation of beta-Ga2O3:Dy3+ phosphors.
Resumo:
First principles calculations were performed to investigate the structural, elastic, and electronic properties of IrN2 for various space groups: cubic Fm-3m and Pa-3, hexagonal P3(2)21, tetragonal P4(2)/mnm, orthorhombic Pmmn, Pnnm, and Pnn2, and monoclinic P2(1)/c. Our calculation indicates that the P2(1)/c phase with arsenopyrite-type structure is energetically more stable than the other phases. It is semiconducting (the remaining phases are metallic) and contains diatomic N-N with the bond distance of 1.414 A. These characters are consistent with the experimental facts that IrN2 is in lower symmetry and nonmetallic. Our conclusion is also in agreement with the recent theoretical studies that the most stable phase of IrN2 is monoclinic P2(1)/c. The calculated bulk modulus of 373 GPa is also the highest among the considered space groups. It matches the recent theoretical values of 357 GPa within 4.3% and of 402 GPa within 7.8%, but smaller than the experimental value of 428 GPa by 14.7%. Chemical bonding and potential displacive phase transitions are discussed for IrN2. For IrN3, cubic skutterudite structure (Im-3) was assumed.