975 resultados para 020401 Condensed Matter Characterisation Technique Development
Resumo:
The introduction of high-permittivity gate dielectric materials into complementary metal oxide semiconductor technology has reopened the interest in Ge as a channel material mainly due to its high hole mobility. Since HfO(2) and ZrO(2) are two of the most promising dielectric candidates, it is important to investigate if Hf and Zr may diffuse into the Ge channel. Therefore, using ab initio density functional theory calculations, we have studied substitutional and interstitial Hf and Zr impurities in c-Ge, looking for neutral defects. We find that (i) substitutional Zr and Hf defects are energetically more favorable than interstitial defects; (ii) under oxygen-rich conditions, neither Zr nor Hf migration towards the channel is likely to occur; (iii) either under Hf- or Zr-rich conditions it is very likely, particularly for Zr, that defects will be incorporated in the channel.
Resumo:
In this work we analyze the spin-polarized charge density distribution in the GeMn diluted ferromagnetic semiconductors (DFS). The calculations are performed within a self-consistent k.p method, in which the exchange correlation effects in the local density approximation, as well as the strain effects due to the lattice mismatch, are taken into account. Our findings show that the extra confinement potential provided by the barriers and the variation of the Mn content in the DFS are responsible for a separation between the different spin charge densities, giving rise to higher mobility spin-polarized currents or high ferromagnetism transition temperatures systems. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
We present our theoretical results for the structural, electronic, vibrational and optical properties of MO(2) (M = Sn, Zr, Hf and Ti) obtained by first-principles calculations. Relativistic effects are demonstrated to be important for a realistic description of the detailed structure of the electronic frequency-dependent dielectric function, as well as of the carrier effective masses. Based on our results, we found that the main contribution of the high values calculated for the oxides dielectric constants arises from the vibrational properties of these oxides, and the vibrational static dielectric constant values diminish with increasing pressure. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This work reports on magnetic measurements of the quasi-two-dimensional (quasi-2D) system Zn(1-x)Mn(x)In(2)Se(4), with 0.01 <= x <= 1.00. For x > 0.67, the quasi-2D system seems to develop a spin-glass behaviour. Evidence of a true phase transition phenomenon is provided by the steep increase of the nonlinear susceptibility chi(nl) when approaching T(C) from above. The static scaling of chi(nl) data yields critical exponents delta = 4.0 +/- 0.2, phi = 4.37 +/- 0.17 and TC = 3.4 +/- 0.1 K for the sample with x = 1.00 and similar values for the sample with x = 0.87. These critical exponents are in good agreement with values reported for other spin-glass systems with short-range interactions.
Resumo:
We report interparticle interactions effects on the magnetic structure of the surface region in Fe(3)O(4) nanoparticles. For that, we have studied a desirable system composed by Fe(3)O(4) nanoparticles with (d) = 9.3 nm and a narrow size distribution. These particles present an interesting morphology constituted by a crystalline core and a broad (similar to 50% vol.) disordered superficial shell. Two samples were prepared with distinct concentrations of the particles: weakly-interacting particles dispersed in a polymer and strongly-dipolar-interacting particles in a powder sample. M(H, T) measurements clearly show that strong dipolar interparticle interaction modifies the magnetic structure of the structurally disordered superficial shell. Consequently, we have observed drastically distinct thermal behaviours of magnetization and susceptibility comparing weakly- and strongly-interacting samples for the temperature range 2 K < T < 300 K. We have also observed a temperature-field dependence of the hysteresis loops of the dispersed sample that is not observed in the hysteresis loops of the powder one.
Resumo:
Cobalt-related impurity centers in diamond have been studied using first principles calculations. We computed the symmetry, formation and transition energies, and hyperfine parameters of cobalt impurities in isolated configurations and in complexes involving vacancies and nitrogen atoms. We found that the Co impurity in a divacant site is energetically favorable and segregates nitrogen atoms in its neighborhood. Our results are discussed in the context of the recently observed Co-related electrically active centers in synthetic diamond.
Resumo:
We present theoretical photoluminescence (PL) spectra of undoped and p-doped Al(x)In(1-xy)Ga(y)N/Al(X)In(1) (X) (Y)Ga(Y)N double quantum wells (DQWs). The calculations were performed within the k.p method by means of solving a full eight-band Kane Hamiltonian together with the Poisson equation in a plane wave representation, including exchange-correlation effects within the local density approximation. Strain effects due to the lattice mismatch are also taken into account. We show the calculated PL spectra, analyzing the blue and red-shifts in energy as one varies the spike and the well widths, as well as the acceptor doping concentration. We found a transition between a regime of isolated quantum wells and that of interacting DQWs. Since there are few studies of optical properties of quantum wells based on nitride quaternary alloys, the results reported here will provide guidelines for the interpretation of forthcoming experiments. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Europium-doped lanthanum aluminate (LaAlO(3)) powder was prepared by using a combustion method. The crystallization, surface morphology, specific surface area and luminescence properties of the samples have been investigated. Photoluminescence studies of Eu doped LaAlO(3) showed orange-reddish emission due to Eu(3+) ions. LaAlO(3):Eu(3+) exhibits one thermally stimulated luminescence (TSL) peak around 400 degrees C. Room temperature electron spin resonance spectrum of irradiated phosphor appears to be a superposition of two centres. One of them (centre I) with principal g-value 2.017 is identified as an O(-) centre while centre II with an isotropic g-value 2.011 is assigned to an F(+) centre (singly ionized oxygen vacancy). An additional defect centre observed during thermal annealing around 300 degrees C grows with the annealing temperature. This centre (assigned to F(+) centre) originates from an F-centre (oxygen vacancy with two electrons) and the F-centre along with the associated F(+) centre appear to correlate with the observed TSL peak in LaAlO(3):Eu(3+) phosphor. The activation energy for this peak has been determined to be 1.54 eV from TSL data. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Terbium (Tb) doped LaMgAl(11)O(19) phosphors have been prepared by the combustion of corresponding metal nitrates (oxidizer) and urea (fuel) at furnace temperature as low as 500 C Combustion synthesized powder phosphor was characterized by X-ray diffraction and field emission scanning electron microscopy techniques LaMgAl(11)O(19) doped with trivalent terbium ions emit weakly in blue and orange light region and strongly in green light region when excited by the ultraviolet light of 261 nm Electron Spin Resonance (ESR) studies were carried out to study the defect centres Induced in the phosphor by gamma irradiation and also to identify the defect centres responsible for the thermally stimulated luminescence (TSL) process Room temperature ESR spectrum of irradiated phosphor appears to be a superposition of at least two defect centres One of the centres (centre I) with principal g-values g(parallel to) = 2 0417 and g(perpendicular to) = 2 0041 is identified as O(2)(-) ion while centre II with an axially symmetric g-tensor with principal values g(parallel to) = 19698 and g(perpendicular to) = 1 9653 is assigned to an F(+) centre (singly ionized oxygen vacancy) An additional defect centre is observed during thermal annealing experiments and this centre (assigned to F(+) centre) seems to originate from an F centre (oxygen vacancy with two electrons) The F centre and also the F+ centre appear to correlate with the observed high temperature TSL peak in LaMgAl(11)O(19) Tb phosphor (C) 2010 Elsevier Masson SAS All rights reserved
Resumo:
The electronic and optical properties of andalusite were studied by using quantum-mechanical calculations based on the density functional theory (DFT). The electronic structure shows that andalusite has a direct band gap of 5.01 eV. The complex dielectric function and optical constants, such as extinction coefficient, refractive index, reflectivity and energy-loss spectrum, are calculated. The optical properties of andalusite are discussed based on the band structure calculations. It is shown that the O-2p states and Al-3s states play a major role in optical transitions as initial and final states, respectively. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this work we evaluate the effectiveness of computed tomography images as a tool to determine magnetic nanoparticle biodistribution over biological tissues. For this purpose, tomography images for magnetic nanoparticles, composed of Fe(3)O(4), coated with 2,3-dimercaptosuccinic acid (DMSA), were generated at several material concentrations. The comparison of CT numbers, calculated from these images generated at clinical conditions, with typical CT numbers for biological tissues, shows that the detection of nanoparticle in most tissues is only possible for high material concentrations. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The spectral decomposition analysis was applied to the optical absorption spectra of green and colorless beryl crystals from the Brazilian Eastern Pegmatitic province in the natural state, Submitted to heat treatment and irradiated with UV light The attributions of the lines were made taking into account highly accurate quantum mechanical calculations The deconvolution of the green beryl spectra revealed four lines, two of them around 12,000 cm(-1) (1 5eV) and two of them around 34,000 cm(-1) (4.2 eV) attributed to Fe(2+) and Fe(3+), respectively The deconvolution of the colorless beryl spectra without any treatment, after heating and for the same heat treatment followed by UV light irradiation revealed five lines The analysis of ratio relations showed that the lines at 36,400 cm(-1) (4.5 eV) and 41,400 cm(-1) (5 1 eV) belongs to a single defect attributed to a silicon dangling bond defect (=Si). Discussions and comparison with reported defects in quartz have supported the allocation of the lines at 61,000 cm(-1) (7.6 eV) and 43,800 cm(-1) (5 4 eV) to diamagnetic oxygen vacancy defect ( Si-Si ) and unrelaxed ( Si Si ) defect, respectively Finally, the line at 39.100 cm(-1) (4.8 eV), quite polarized along the c-axis, was attributed to a (Fe(2+) OH(-)) defect in the structural channels (C) 2009 Elsevier B V All rights reserved
Resumo:
The phase change of a natural hemimorphite sample from Minas Gerais (Brazil) was investigated by two X-ray diffraction (XRD) methods and by near-infrared reflectance spectroscopy. Applying successive thermal treatments, the crystal structure undergoes two orientation conversions. The first one occurs at about 550 degrees C, and it was revealed by the Laue method. Below 500 degrees C, the water molecules were partially expelled without changing the crystal structure. A fact that supports this statement is the sequential disappearance of the water bands at 1400 and 1900 nm by thermal treatment. The second conversion takes place below 939 degrees C. Moreover, at 972 degrees C a phase change to the willemite mineral (alpha-Zn(2)SiO(4)) has been observed. This last conversion was confirmed by the power XRD. In addition, natural hemimorphite displayed a high pyroelectricity, which is related both to the absence of inverse centre and to the presence of molecular water and hydroxyl groups in the crystal structure.
Resumo:
The age of some ancient pottery from the Valley of Vitor in the region of Arequipa, Peru, is determined by the thermoluminescence (TL) method. For dating, a 325 degrees C TL peak was used and irradiation with -dose from 5 to 50Gy was carried out for the additive method, and from 0.4 to 5Gy for the regeneration method. For these dose values, the TL intensity is observed to grow linearly, obtaining an accumulated dose of 1.62 +/- 0.09Gy and 1.36 +/- 0.03Gy for the additive and regeneration methods, respectively. The age (A) of the sample was calculated by the two methods, being A=867 +/- 195 years after Christ (AC) for the additive method and A=1050 +/- 157 years AC for the regeneration method. Both results are within 800-1200 years AC, which is the period of the Wari culture.
Resumo:
The cleaning procedure consists of two-step-flashing: (i) cycles of low power flashes T similar to 1200 K) at an oxygen partial pressure of P(o2) = 6 x 10(-8) mbar, to remove the carbon from the surface, and (ii) a single high power flash (T similar to 2200 K), to remove the oxide layer. The removal of carbon from the surface through the chemical reaction with oxygen during low power flash cycles is monitored by thermal desorption spectroscopy. The exposure to O(2) leads to the oxidation of the W surface. Using a high power flash, the volatile W-oxides and the atomic oxygen are desorbed, leaving a clean crystal surface at the end of procedure. The method may also be used for cleaning other refractory metals like Mo, Re and It. (C) 2009 Elsevier B.V. All rights reserved.