Interparticle Interactions Effects on the Magnetic Order in Surface of Fe(3)O(4) Nanoparticles
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2008
|
Resumo |
We report interparticle interactions effects on the magnetic structure of the surface region in Fe(3)O(4) nanoparticles. For that, we have studied a desirable system composed by Fe(3)O(4) nanoparticles with (d) = 9.3 nm and a narrow size distribution. These particles present an interesting morphology constituted by a crystalline core and a broad (similar to 50% vol.) disordered superficial shell. Two samples were prepared with distinct concentrations of the particles: weakly-interacting particles dispersed in a polymer and strongly-dipolar-interacting particles in a powder sample. M(H, T) measurements clearly show that strong dipolar interparticle interaction modifies the magnetic structure of the structurally disordered superficial shell. Consequently, we have observed drastically distinct thermal behaviours of magnetization and susceptibility comparing weakly- and strongly-interacting samples for the temperature range 2 K < T < 300 K. We have also observed a temperature-field dependence of the hysteresis loops of the dispersed sample that is not observed in the hysteresis loops of the powder one. |
Identificador |
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, v.8, n.11, p.5913-5920, 2008 1533-4880 http://producao.usp.br/handle/BDPI/29417 10.1166/jnn.2008.244 |
Idioma(s) |
eng |
Publicador |
AMER SCIENTIFIC PUBLISHERS |
Relação |
Journal of Nanoscience and Nanotechnology |
Direitos |
closedAccess Copyright AMER SCIENTIFIC PUBLISHERS |
Palavras-Chave | #Fine Particles #Core-Shell Particle #Superparamagnetism #Magnetic Order #Magnetic Freezing #GAMMA-FE2O3 NANOPARTICLES #NIO NANOPARTICLES #HYSTERESIS #RELAXATION #SYSTEMS #ASSEMBLIES #DISORDER #SIZE #Chemistry, Multidisciplinary #Nanoscience & Nanotechnology #Materials Science, Multidisciplinary #Physics, Applied #Physics, Condensed Matter |
Tipo |
article original article publishedVersion |