921 resultados para Motor Vehicles by Power Source.
Resumo:
Thickness effect of immiscible alloy InAlAs as matrix layer on the morphology of InAs nanostructure grown on InAlAs/InP (0 0 1) by solid-source molecular-beam epitaxy has been studied. Experiments demonstrate that InAs nanostructure grown on thin InAlAs matrix layer forms randomly distributed quantum dot, whereas, grown on thick InAlAs matrix layer forms one-dimension ordered mixture of quantum wire and quantum dot. This drastic modification in the nanostructure morphology is attributed to the generation of composition modulation in the immiscible InAlAs alloy with the increase of the layer thickness. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
GaAs (001) substrates are patterned by electron beam lithography and wet chemical etching to control the nucleation of InAs quantum dots (QDs). InAs dots are grown on the stripe-patterned substrates by solid source molecular beam epitaxy, A thick buffer layer is deposited on the strip pattern before the deposition of InAs. To enhance the surface diffusion length of the In atoms, InAs is deposited with low growth rate and low As pressure. The AFM images show that distinct one-dimensionally ordered InAs QDs with homogeneous size distribution are created, and the QDs preferentially nucleate along the trench. With the increasing amount of deposited InAs and the spacing of the trenches, a number of QDs are formed beside the trenches. The distribution of additional QDs is long-range ordered, always along the trenchs rather than across the spacing regions.
Resumo:
A self-assembled quantum-wire laser structure was grown by solid-source molecular beam epitaxy in an InAlGaAs-InAlAs matrix oil InP(001) substrate. Ridge-waveguide lasers were fabricated and demonstrated to operate at a heatsink temperature tip to 330 K in continuous-wave (CW) mode. The emission wavelength of the lasers with 5 mm-long cavity was 1.713 mu m at room temperature in CW mode. The temperature stability of the devices was analysed and the characteristic temperature was found to be 47 K in the mnge of 220-320 K.
Resumo:
By a combination of prepatterned substrate and self-organized growth, InAs islands are grown on the stripe-patterned GaAs (100) substrate by solid-source molecular beam epitaxy. It is found that the InAs quantum dots can be formed either on the ridge or on the sidewall of the stripes near the bottom, depending on the structure of the stripes on the patterned substrate or molecular beam epitaxy growth conditions. When a InxGa(1-x)As strained layer is grown first before InAs deposition, almost all the InAs quantum dots are deposited at the edges of the top ridge. And when the InAs deposition amount is larger, a quasi-quantum wire structure is found. The optical properties of the InAs dots on the patterned substrate are also investigated by photoluminescence. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
InAs quantum dots have been grown by solid source molecular beam epitaxy on different matrix to investigate the effect on the structure and optical properties. High density of 1.02 x 10(11) cm(-2) of InAs islands on In0.15Ga0.85As and In0.15Al0.85As underlying layer has been achieved. Atomic force microscopy and photoluminescence spectra show the size evolution of InAs islands on In0.15Ga0.85As underlying layer. A strong 1.3 mum photoluminescence from InAs islands on In0.15Ga0.85As underlying layer and with InGaAs strain-reduced layer has been obtained. Single-mirror light emitting diode structures with InAs quantum dots capped by InGaAs grown on InGaAs layer as active layer were fabricated and the corresponding radiative efficiency was deduced to be as high as 20.5%. Our results provide important information for optimizing the epitaxial structures of 1.3 mum wavelength quantum dots devices. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A high density of 1.02 x 10(11) cm(-2) of InAs islands with In(0.15)Gao(0.85)As underlying layer has been achieved on GaAs (10 0) substrate by solid source molecular beam epitaxy. Atomic force microscopy and PL spectra show the size evolution of InAs islands. A 1.3 mum photoluminescence (PL) from InAs islands with In(0.15)Gao(0.85)As underlying layer and InGaAs strain-reduced layer has been obtained. Our results provide important information for optimizing the epitaxial structures of 1.3 mum wavelength quantum dots devices. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Strained InAs nanostructures have been grown by solid-source molecular beam epitaxy in In0.52Al0.48As matrix on different InP substrate surfaces ((0 0 1) and (1 1 n)A/B (n = 1 - 5)). The morphology of the nanostructures was characterized using atomic force microscopy (AFM). The AFM results reveal interesting differences in the size, shape, and alignment of the nanostructures between different oriented surfaces. It was found that some faceted nanostructures tend to form on A-type surfaces, the shape and the alignment of these nanostructures show clear dependence on the substrate orientation. Samples grown on (0 0 1) and B-type surfaces showed preferentially dense round dots. Dots formed on (1 1 3)B, (1 1 3)B and (1 1 5)B surfaces have a higher dot density and size homogeneity, which shows a potential for the production of high-quality and customized self-assembled quantum dots for photonics applications. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Using Raman spectroscopy we have analysed the strain status of GaN films grown on sapphire substrates by NH3 source molecular beam epitaxy (MBE). In addition to the expected compressive biaxial strain, in some cases GaN films grown on c-face sapphire substrates suffer from serious tensile biaxial strain. This anomalous behaviour has been well interpreted in terms of interstitial hydrogen-dependent lattice dilation. The hydrogen concentration in the films is measured by nuclear reaction analysis (NRA). With increasing hydrogen incorporation, the residual compressive biaxial strain is first further relaxed, and then turns into tensile strain when the hydrogen contaminant exceeds a critical concentration. The hydrogen incorporation during the growth process is found to be growth-rate dependent, and is supposed to be strain driven. We believe that the strain-induced interstitial incorporation is another way for strain relaxation during heteroepitaxy, besides the two currently well known mechanisms: formation of dislocations and growth front roughening.
Structural and infrared absorption properties of self-organized InGaAs GaAs quantum dots multilayers
Resumo:
Self-organized InGaAs/GaAs quantum dots (QDs) stacked multilayers have been prepared by solid source molecular beam epitaxy. Cross-sectional transmission electron microscopy shows that the InGaAs QDs are nearly perfectly vertically aligned in the growth direction [100]. The filtering effect on the QDs distribution is found to be the dominant mechanism leading to vertical alignment and a highly uniform size distribution. Moreover, we observe a distinct infrared absorption from the sample in the range of 8.6-10.7 mu m. This indicates the potential of QDs multilayer structure for use as infrared photodetector.
Resumo:
In this letter, we report on the observation of Fermi-edge singularity in a modulation-doped AlGaN/GaN heterostructure grown on a c-face sapphire substrate by NH3 source molecular beam epitaxy. The two-dimensional electron gas (2DEG) characteristic of the structure is manifested by variable temperature Hall effect measurements down to 7 K. Low-temperature photoluminescence (PL) spectra show a broad emission band originating from the recombination of the 2DEG and localized holes. The enhancement in PL intensity in the high-energy side approaching Fermi level was observed at temperatures below 20 K. At higher temperatures, the enhancement disappears because of the thermal broadening of the Fermi edge. (C) 1998 American Institute of Physics. [S0003-6951(98)02543-1].
Resumo:
We present a strain-compensated InP-based InGaAs/InAlAs photovoltaic quantum cascade detector grown by solid source molecular beam epitaxy. The detector is based on a vertical intersubband transition and electron transfer on a cascade of quantum levels which is designed to provide longitudinal optical phonon extraction stairs. By careful structure design and growth, the whole epilayer has a residual strain toward InP substrate of only -2.8 x 10(-4). A clear narrow band detection spectrum centered at 4.5 mu m has been observed above room temperature for a device with 200 x 200 mu m(2) square mesa.
Resumo:
弃土弃渣是工程建设产生的最主要地面组成物质之一。采用野外放水冲刷试验方法,对黄河班多水电站工程区弃土弃渣水土流失过程进行了研究。(1)不同供水流量下,产流率随供水过程的动态变化整体呈增长趋势,可用幂函数方程描述,开始产流后的5 min内产流过程的变化幅度较大,随后较为平缓,并趋于基本稳定;(2)不同供水流量下,产沙率随供水历时的增长而减少,可用对数相关方程描述,小流量下变化过程波动较小,大流量下变化幅度较大;(3)不同供水流量下,含沙量随着供水历时的增长而减少,可用对数相关方程描述。各流量下的变化趋势基本一致;(4)次产流深、次产沙模数皆随供水流量的增大而增加,增加趋势基本相同,皆可用对数相关方程描述。平均含沙量随供水流量的增大先增加后减小,临界值为7.17 L/min,可用抛物线相关方程描述;(5)次产沙模数随次产流深的增大而增加,表现为很好的正相关关系,可用对数相关方程来描述。
Resumo:
InxGa1-xAs/InP (0.39 less than or equal to x less than or equal to 0.68) strained-layer quantum wells having 20 wells with thickness of 50 Angstrom in a P-i-N configuration were grown by gas source molecular beam epitaxy (GSMBE). High-resolution X-ray diffraction rocking curves show the presence of up to seven orders of sharp and intense satellite reflection, indicative of the structural perfection of the samples. Low-temperature photoluminescence and low-temperature absorption spectra were used to determine the exciton transition energies as a function of strain. Good agreement is achieved between exciton transition energies obtained experimentally at low temperature with those calculated using the deformation potential theory.
Resumo:
The growth of GalnNAs/GaAs quantum well (QW) has been investigated by solid-source molecular beam epitaxy (MBE). N was introduced by a dc-active plasma source. Highest N concentration of 2.6% in GaInNAs/GaAs QW was obtained, corresponding to the photoluminescence peak wavelength of 1.57 mum at 10K. The nitrogen incorporation behavior in MBE growth and the quality improvement of the QW have been studied in detail. 1.3 mum GaInNAs/GaAs SQW laser and MQW resonant-cavity enhanced photodetector have been achieved.
Structural and infrared absorption properties of self-organized InGaAs GaAs quantum dots multilayers
Resumo:
Self-organized InGaAs/GaAs quantum dots (QDs) stacked multilayers have been prepared by solid source molecular beam epitaxy. Cross-sectional transmission electron microscopy shows that the InGaAs QDs are nearly perfectly vertically aligned in the growth direction [100]. The filtering effect on the QDs distribution is found to be the dominant mechanism leading to vertical alignment and a highly uniform size distribution. Moreover, we observe a distinct infrared absorption from the sample in the range of 8.6-10.7 mu m. This indicates the potential of QDs multilayer structure for use as infrared photodetector.