833 resultados para PROBABILITY REPRESENTATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a system for the computer understanding of English. The system answers questions, executes commands, and accepts information in normal English dialog. It uses semantic information and context to understand discourse and to disambiguate sentences. It combines a complete syntactic analysis of each sentence with a "heuristic understander" which uses different kinds of information about a sentence, other parts of the discourse, and general information about the world in deciding what the sentence means. It is based on the belief that a computer cannot deal reasonably with language unless it can "understand" the subject it is discussing. The program is given a detailed model of the knowledge needed by a simple robot having only a hand and an eye. We can give it instructions to manipulate toy objects, interrogate it about the scene, and give it information it will use in deduction. In addition to knowing the properties of toy objects, the program has a simple model of its own mentality. It can remember and discuss its plans and actions as well as carry them out. It enters into a dialog with a person, responding to English sentences with actions and English replies, and asking for clarification when its heuristic programs cannot understand a sentence through use of context and physical knowledge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a set of techniques that can be used to represent and detect shapes in images. Our methods revolve around a particular shape representation based on the description of objects using triangulated polygons. This representation is similar to the medial axis transform and has important properties from a computational perspective. The first problem we consider is the detection of non-rigid objects in images using deformable models. We present an efficient algorithm to solve this problem in a wide range of situations, and show examples in both natural and medical images. We also consider the problem of learning an accurate non-rigid shape model for a class of objects from examples. We show how to learn good models while constraining them to the form required by the detection algorithm. Finally, we consider the problem of low-level image segmentation and grouping. We describe a stochastic grammar that generates arbitrary triangulated polygons while capturing Gestalt principles of shape regularity. This grammar is used as a prior model over random shapes in a low level algorithm that detects objects in images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel scheme ("Categorical Basis Functions", CBF) for object class representation in the brain and contrast it to the "Chorus of Prototypes" scheme recently proposed by Edelman. The power and flexibility of CBF is demonstrated in two examples. CBF is then applied to investigate the phenomenon of Categorical Perception, in particular the finding by Bulthoff et al. (1998) of categorization of faces by gender without corresponding Categorical Perception. Here, CBF makes predictions that can be tested in a psychophysical experiment. Finally, experiments are suggested to further test CBF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphical techniques for modeling the dependencies of randomvariables have been explored in a variety of different areas includingstatistics, statistical physics, artificial intelligence, speech recognition, image processing, and genetics.Formalisms for manipulating these models have been developedrelatively independently in these research communities. In this paper weexplore hidden Markov models (HMMs) and related structures within the general framework of probabilistic independencenetworks (PINs). The paper contains a self-contained review of the basic principles of PINs.It is shown that the well-known forward-backward (F-B) and Viterbialgorithms for HMMs are special cases of more general inference algorithms forarbitrary PINs. Furthermore, the existence of inference and estimationalgorithms for more general graphical models provides a set of analysistools for HMM practitioners who wish to explore a richer class of HMMstructures.Examples of relatively complex models to handle sensorfusion and coarticulationin speech recognitionare introduced and treated within the graphical model framework toillustrate the advantages of the general approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tsunoda et al. (2001) recently studied the nature of object representation in monkey inferotemporal cortex using a combination of optical imaging and extracellular recordings. In particular, they examined IT neuron responses to complex natural objects and "simplified" versions thereof. In that study, in 42% of the cases, optical imaging revealed a decrease in the number of activation patches in IT as stimuli were "simplified". However, in 58% of the cases, "simplification" of the stimuli actually led to the appearance of additional activation patches in IT. Based on these results, the authors propose a scheme in which an object is represented by combinations of active and inactive columns coding for individual features. We examine the patterns of activation caused by the same stimuli as used by Tsunoda et al. in our model of object recognition in cortex (Riesenhuber 99). We find that object-tuned units can show a pattern of appearance and disappearance of features identical to the experiment. Thus, the data of Tsunoda et al. appear to be in quantitative agreement with a simple object-based representation in which an object's identity is coded by its similarities to reference objects. Moreover, the agreement of simulations and experiment suggests that the simplification procedure used by Tsunoda (2001) is not necessarily an accurate method to determine neuronal tuning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fundamental question in visual neuroscience is how to represent image structure. The most common representational schemes rely on differential operators that compare adjacent image regions. While well-suited to encoding local relationships, such operators have significant drawbacks. Specifically, each filter's span is confounded with the size of its sub-fields, making it difficult to compare small regions across large distances. We find that such long-distance comparisons are more tolerant to common image transformations than purely local ones, suggesting they may provide a useful vocabulary for image encoding. . We introduce the "Dissociated Dipole," or "Sticks" operator, for encoding non-local image relationships. This operator de-couples filter span from sub-field size, enabling parametric movement between edge and region-based representation modes. We report on the perceptual plausibility of the operator, and the computational advantages of non-local encoding. Our results suggest that non-local encoding may be an effective scheme for representing image structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The question of how shape is represented is of central interest to understanding visual processing in cortex. While tuning properties of the cells in early part of the ventral visual stream, thought to be responsible for object recognition in the primate, are comparatively well understood, several different theories have been proposed regarding tuning in higher visual areas, such as V4. We used the model of object recognition in cortex presented by Riesenhuber and Poggio (1999), where more complex shape tuning in higher layers is the result of combining afferent inputs tuned to simpler features, and compared the tuning properties of model units in intermediate layers to those of V4 neurons from the literature. In particular, we investigated the issue of shape representation in visual area V1 and V4 using oriented bars and various types of gratings (polar, hyperbolic, and Cartesian), as used in several physiology experiments. Our computational model was able to reproduce several physiological findings, such as the broadening distribution of the orientation bandwidths and the emergence of a bias toward non-Cartesian stimuli. Interestingly, the simulation results suggest that some V4 neurons receive input from afferents with spatially separated receptive fields, leading to experimentally testable predictions. However, the simulations also show that the stimulus set of Cartesian and non-Cartesian gratings is not sufficiently complex to probe shape tuning in higher areas, necessitating the use of more complex stimulus sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compositional data analysis motivated the introduction of a complete Euclidean structure in the simplex of D parts. This was based on the early work of J. Aitchison (1986) and completed recently when Aitchinson distance in the simplex was associated with an inner product and orthonormal bases were identified (Aitchison and others, 2002; Egozcue and others, 2003). A partition of the support of a random variable generates a composition by assigning the probability of each interval to a part of the composition. One can imagine that the partition can be refined and the probability density would represent a kind of continuous composition of probabilities in a simplex of infinitely many parts. This intuitive idea would lead to a Hilbert-space of probability densities by generalizing the Aitchison geometry for compositions in the simplex into the set probability densities

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Central notations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform. In this way very elaborated aspects of mathematical statistics can be understood easily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating, combination of likelihood and robust M-estimation functions are simple additions/ perturbations in A2(Pprior). Weighting observations corresponds to a weighted addition of the corresponding evidence. Likelihood based statistics for general exponential families turns out to have a particularly easy interpretation in terms of A2(P). Regular exponential families form finite dimensional linear subspaces of A2(P) and they correspond to finite dimensional subspaces formed by their posterior in the dual information space A2(Pprior). The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P. The discussion of A2(P) valued random variables, such as estimation functions or likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen tomado de la publicaci??n

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we define a new scheme to develop and evaluate protection strategies for building reliable GMPLS networks. This is based on what we have called the network protection degree (NPD). The NPD consists of an a priori evaluation, the failure sensibility degree (FSD), which provides the failure probability, and an a posteriori evaluation, the failure impact degree (FID), which determines the impact on the network in case of failure, in terms of packet loss and recovery time. Having mathematical formulated these components, experimental results demonstrate the benefits of the utilization of the NPD, when used to enhance some current QoS routing algorithms in order to offer a certain degree of protection

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photo-mosaicing techniques have become popular for seafloor mapping in various marine science applications. However, the common methods cannot accurately map regions with high relief and topographical variations. Ortho-mosaicing borrowed from photogrammetry is an alternative technique that enables taking into account the 3-D shape of the terrain. A serious bottleneck is the volume of elevation information that needs to be estimated from the video data, fused, and processed for the generation of a composite ortho-photo that covers a relatively large seafloor area. We present a framework that combines the advantages of dense depth-map and 3-D feature estimation techniques based on visual motion cues. The main goal is to identify and reconstruct certain key terrain feature points that adequately represent the surface with minimal complexity in the form of piecewise planar patches. The proposed implementation utilizes local depth maps for feature selection, while tracking over several views enables 3-D reconstruction by bundle adjustment. Experimental results with synthetic and real data validate the effectiveness of the proposed approach

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In networks with small buffers, such as optical packet switching based networks, the convolution approach is presented as one of the most accurate method used for the connection admission control. Admission control and resource management have been addressed in other works oriented to bursty traffic and ATM. This paper focuses on heterogeneous traffic in OPS based networks. Using heterogeneous traffic and bufferless networks the enhanced convolution approach is a good solution. However, both methods (CA and ECA) present a high computational cost for high number of connections. Two new mechanisms (UMCA and ISCA) based on Monte Carlo method are proposed to overcome this drawback. Simulation results show that our proposals achieve lower computational cost compared to enhanced convolution approach with an small stochastic error in the probability estimation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic Molecules: Depiction of Structure - The Basics. Powerpoint presentation of A Level revision material for 1st year undergraduates written by Jeremy Hinks, School of Chemistry in 2002.