Hilbert space on probability density functions with Aitchison geometry
Contribuinte(s) |
Thió i Fernández de Henestrosa, Santiago Martín Fernández, Josep Antoni Universitat de Girona. Departament d'Informàtica i Matemàtica Aplicada |
---|---|
Data(s) |
15/10/2003
|
Resumo |
Compositional data analysis motivated the introduction of a complete Euclidean structure in the simplex of D parts. This was based on the early work of J. Aitchison (1986) and completed recently when Aitchinson distance in the simplex was associated with an inner product and orthonormal bases were identified (Aitchison and others, 2002; Egozcue and others, 2003). A partition of the support of a random variable generates a composition by assigning the probability of each interval to a part of the composition. One can imagine that the partition can be refined and the probability density would represent a kind of continuous composition of probabilities in a simplex of infinitely many parts. This intuitive idea would lead to a Hilbert-space of probability densities by generalizing the Aitchison geometry for compositions in the simplex into the set probability densities Geologische Vereinigung; Universitat de Barcelona, Equip de Recerca Arqueomètrica; Institut d’Estadística de Catalunya; International Association for Mathematical Geology; Patronat de l’Escola Politècnica Superior de la Universitat de Girona; Fundació privada: Girona, Universitat i Futur. |
Formato |
application/pdf |
Identificador |
Egozcue, J.J.; Díaz Barrero, J.L. 'Hilbert space on probability density functions with Aitchison geometry' a CODAWORK’03. Girona: La Universitat, 2003 [consulta: 2 maig 2008]. Necessita Adobe Acrobat. Disponible a Internet a: http://hdl.handle.net/10256/649 84-8458-111-X |
Idioma(s) |
eng |
Publicador |
Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada |
Direitos |
Tots els drets reservats |
Palavras-Chave | #Hilbert, Àlgebra de #Anàlisi funcional |
Tipo |
info:eu-repo/semantics/conferenceObject |