Estimation of the probability of congestion using Monte Carlo method in OPS networks


Autoria(s): Urra i Fàbregas, Anna; Marzo i Lázaro, Josep Lluís; Sbert, Mateu; Calle Ortega, Eusebi
Data(s)

2005

Resumo

In networks with small buffers, such as optical packet switching based networks, the convolution approach is presented as one of the most accurate method used for the connection admission control. Admission control and resource management have been addressed in other works oriented to bursty traffic and ATM. This paper focuses on heterogeneous traffic in OPS based networks. Using heterogeneous traffic and bufferless networks the enhanced convolution approach is a good solution. However, both methods (CA and ECA) present a high computational cost for high number of connections. Two new mechanisms (UMCA and ISCA) based on Monte Carlo method are proposed to overcome this drawback. Simulation results show that our proposals achieve lower computational cost compared to enhanced convolution approach with an small stochastic error in the probability estimation

Formato

application/pdf

Identificador

Urra, A., Marzo, J.L., Sbert, M., i Calle, E. (2005). Estimation of the probability of congestion using Monte Carlo method in OPS networks. 10th IEEE Symposium on Computers and Communications : 2005 : ISCC 2005 : Proceedings, 561-566. Recuperat 10 maig 2010, a http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1493781

0-7695-2373-0

1530-1346

http://hdl.handle.net/10256/2236

http://dx.doi.org/10.1109/ISCC.2005.67

Idioma(s)

eng

Publicador

IEEE

Relação

Reproducció digital del document publicat a: http://dx.doi.org/10.1109/ISCC.2005.67

© 10th IEEE Symposium on Computers and Communications : 2005 : ISCC 2005 : Proceedings, 2005, p. 561-566

Articles publicats (D-ATC)

Direitos

Tots els drets reservats

Palavras-Chave #Commutació de paquets (Transmissió de dades) #Comunicacions òptiques #Montecarlo, Mètode de #Monte Carlo method #Optical communications #Packet switching (Data transmission)
Tipo

info:eu-repo/semantics/article