229 resultados para androgens


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rationale: Anabolic steroids are drugs of abuse. However, the potential for addiction remains unclear. Testosterone induces conditioned place preference in rats and oral self-administration in hamsters. Objectives: To determine if male rats and hamsters consume testosterone by intravenous (IV) or intracerebroventricular (ICV) self- administration. Methods: With each nose-poke in the active hole during daily 4-h tests in an operant condi- tioning chamber, gonad-intact adult rats and hamsters received 50 mg testosterone in an aqueous solution of b-cyclodextrin via jugular cannula. The inactive nose- poke hole served as a control. Additional hamsters received vehicle infusions. Results: Rats (n=7) expressed a significant preference for the active nose-poke hole (10.0€2.8 responses/4 h) over the inactive hole (4.7€1.2 responses/4 h). Similarly, during 16 days of testosterone self-administration IV, hamsters (n=9) averaged 11.7€2.9 responses/4 h and 6.3€1.1 responses/4 h in the active and inactive nose-poke holes, respectively. By contrast, vehicle controls (n=8) failed to develop a preference for the active nose-poke hole (6.5€0.5 and 6.4€0.3 responses/4 h). Hamsters (n=8) also self-administered 1 mg testosterone ICV (active hole:39.8€6.0 nose-pokes/ 4 h; inactive hole: 22.6€7.1 nose-pokes/4 h). When testosterone was replaced with vehicle, nose-poking in the active hole declined from 31.1€7.6 to 11.9€3.2 responses/ 4 h within 6 days. Likewise, reversing active and inactive holes increased nose-poking in the previously inactive hole from 9.1€1.9 to 25.6€5.4 responses/4 h. However, reducing the testosterone dose from 1 mg to 0.2 mg per 1 ml injection did not change nose-poking. Conclu- sions: Compared with other drugs of abuse, testosterone reinforcement is modest. Nonetheless, these data support the hypothesis that testosterone is reinforcing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chitinase 3-like 1 (CHI3L1 or YKL40) is a secreted glycoprotein highly expressed in tumours from patients with advanced stage cancers, including prostate cancer (PCa). The exact function of YKL40 is poorly understood, but it has been shown to play an important role in promoting tumour angiogenesis and metastasis. The therapeutic value and biological function of YKL40 are unknown in PCa. The objective of this study was to examine the expression and function of YKL40 in PCa. Gene expression analysis demonstrated that YKL40 was highly expressed in metastatic PCa cells when compared with less invasive and normal prostate epithelial cell lines. In addition, the expression was primarily limited to androgen receptor-positive cell lines. Evaluation of YKL40 tissue expression in PCa patients showed a progressive increase in patients with aggressive disease when compared with those with less aggressive cancers and normal controls. Treatment of LNCaP and C4-2B cells with androgens increased YKL40 expression, whereas treatment with an anti-androgen agent decreased the gene expression of YKL40 in androgen-sensitive LNCaP cells. Furthermore, knockdown of YKL40 significantly decreased invasion and migration of PCa cells, whereas overexpression rendered them more invasive and migratory, which was commensurate with an enhancement in the anchorage-independent growth of cells. To our knowledge, this study characterises the role of YKL40 for the first time in PCa. Together, these results suggest that YKL40 plays an important role in PCa progression and thus inhibition of YKL40 may be a potential therapeutic strategy for the treatment of PCa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Androgens regulate biological pathways to promote proliferation, differentiation, and survival of benign and malignant prostate tissue. Androgen receptor (AR) targeted therapies exploit this dependence and are used in advanced prostate cancer to control disease progression. Contemporary treatment regimens involve sequential use of inhibitors of androgen synthesis or AR function. Although targeting the androgen axis has clear therapeutic benefit, its effectiveness is temporary, as prostate tumor cells adapt to survive and grow. The removal of androgens (androgen deprivation) has been shown to activate both epithelial-to-mesenchymal transition (EMT) and neuroendocrine transdifferentiation (NEtD) programs. EMT has established roles in promoting biological phenotypes associated with tumor progression (migration/invasion, tumor cell survival, cancer stem cell-like properties, resistance to radiation and chemotherapy) in multiple human cancer types. NEtD in prostate cancer is associated with resistance to therapy, visceral metastasis, and aggressive disease. Thus, activation of these programs via inhibition of the androgen axis provides a mechanism by which tumor cells can adapt to promote disease recurrence and progression. Brachyury, Axl, MEK, and Aurora kinase A are molecular drivers of these programs, and inhibitors are currently in clinical trials to determine therapeutic applications. Understanding tumor cell plasticity will be important in further defining the rational use of androgen-targeted therapies clinically and provides an opportunity for intervention to prolong survival of men with metastatic prostate cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simultaneous expression of highly homologous RLN1 and RLN2 genes in prostate impairs their accurate delineation. We used PacBio SMRT sequencing and RNA-Seq in LNCaP cells in order to dissect the expression of RLN1 and RLN2 variants. We identified a novel fusion transcript comprising the RLN1 and RLN2 genes and found evidence of its expression in the normal and prostate cancer tissues. The RLN1-RLN2 fusion putatively encodes RLN2 isoform with the deleted secretory signal peptide. The identification of the fusion transcript provided information to determine unique RLN1-RLN2 fusion and RLN1 regions. The RLN1-RLN2 fusion was co-expressed with RLN1 in LNCaP cells, but the two gene products were inversely regulated by androgens. We showed that RLN1 is underrepresented in common PCa cell lines in comparison to normal and PCa tissue. The current study brings a highly relevant update to the relaxin field, and will encourage further studies of RLN1 and RLN2 in PCa and broader.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Androgens control a variety of developmental processes that create the male phenotype and are important for maintaining male fertility and normal functions of tissues and organs that are not directly involved in procreation. Androgen receptor (AR) that mediates the biological actions of androgens is a member of the nuclear receptor superfamily of ligand-inducible transcription factors. Although AR was cloned over 15 years ago, the mechanisms by which it regulates gene expression are not well understood. A growing body of in vitro experimental evidence suggests that a complex network of proteins is involved in the androgen-dependent transcriptional regulation. However, the process of AR-dependent transcriptional regulation under physiological conditions is largely elusive. In the present study, a series of experiments were performed, including quantitative chromatin immunoprecipitation (ChIP) assays, to investigate AR-mediated transcription process using living prostate cancer cells. Our results show that the loading of AR and recruitment of coactivators and RNA polymerase II (Pol II) to both the promoter and enhancer of AR target genes are a transient and cyclic event that in addition to hyperacetylation, also involves dynamic changes in methylation, phosphorylation of core histone H3 in androgen-treated LNCaP cells. The dynamics of testosterone (T)-induced loading of AR onto the proximal promoters of the genes clearly differed from that loaded onto the distal enhancers. Significantly, more holo-AR was loaded onto the enhancers than the promoters, but the principal Pol II transcription complex was assembled on the promoters. By contrast, the pure antiandrogen bicalutamide (CDX) complexed to AR elicited occupancy of the PSA promoter, but was unable to load onto the PSA enhancer and was incapable of recruiting Pol II, coactivators and following changes of covalent histone modifications. The partial antagonist cyproterone acetate (CPA) and mifepristone (RU486) were capable of promoting AR loading onto both the PSA promoter and enhancer at a comparable efficiency with androgen in LNCaP cells expressing mutant AR. However, CPA- and RU486-bound AR not only recruited Pol II and coactivator p300 and GRIP1 onto the promoter and enhancer, but also recruited the corepressor NCoR onto the promoter as efficiently as CDX. In addition, we demonstrate that both proteasome and protein kinases are implicated in AR-mediated transcription. Even though proteasome inhibitor MG132 and protein kinase inhibitor DRB (5, 6-Dichlorobenzimidazole riboside) can block ligand-dependent accumulation of PSA mRNA with same efficiency, their use results in different molecular profiles in terms of the formation of AR-mediated transcriptional complex. Collectively, these results indicate that transcriptional activation by AR is a complicated process, which includes transient loading of holo-AR and recruitment of Pol II and coregulators accompanied by a cascade of distinct covalent histone modifications; This process involves both the promoter and enhancer elements, as well as other general components of the cell machineries e.g. proteasome and protein kinase; The pure antiandrogen CDX and the partial antagonist CPA and RU486 exhibit clearly different profiles in terms of their ability to induce the formation of AR-dependent transcriptional complexes and the histone modifications associated with the target genes in human prostate cancer cells. Finally, by using quantitative RT-PCR to compare the expression of sixteen AR co-regulators in prostate cancer cell lines, xenografts, and clinical prostate cancer specimens we suggest that AR co-regulators protein inhibitor of activated STAT1 (PIAS1) and steroid receptor coactivator 1(SRC1) could be involved in the progression of prostate cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The androgen receptor (AR) mediates the effects of the male sex-steroid hormones (androgens), testosterone and 5?-dihydrotestosterone. Androgens are critical in the development and maintenance of male sexual characteristics. AR is a member of the steroid receptor ligand-inducible transcription factor family. The steroid receptor family is a subgroup of the nuclear receptor superfamily that also includes receptors for the active forms of vitamin A, vitamin D3, and thyroid hormones. Like all nuclear receptors, AR has a conserved modular structure consisting of a non-conserved amino-terminal domain (NTD), containing the intrinsic activation function 1, a highly conserved DNA-binding domain, and a conserved ligand-binding domain (LBD) that harbors the activation function 2. Each of these domains plays an important role in receptor function and signaling, either via intra- and inter-receptor interactions, interactions with specific DNA sequences, termed hormone response elements, or via functional interactions with domain-specific proteins, termed coregulators (coactivators and corepressors). Upon binding androgens, AR acquires a new conformational state, translocates to the nucleus, binds to androgen response elements, homodimerizes and recruits sequence-specific coregulatory factors and the basal transcription machinery. This set of events is required to activate gene transcription (expression). Gene transcription is a strictly modulated process that governs cell growth, cell homeostasis, cell function and cell death. Disruptions of AR transcriptional activity caused by receptor mutations and/or altered coregulator interactions are linked to a wide spectrum of androgen insensitivity syndromes, and to the pathogenesis of prostate cancer (CaP). The treatment of CaP usually involves androgen depletion therapy (ADT). ADT achieves significant clinical responses during the early stages of the disease. However, under the selective pressure of androgen withdrawal, androgen-dependent CaP can progress to an androgen-independent CaP. Androgen-independent CaP is invariably a more aggressive and untreatable form of the disease. Advancing our understanding of the molecular mechanisms behind the switch in androgen-dependency would improve our success of treating CaP and other AR related illnesses. This study evaluates how clinically identified AR mutations affect the receptor s transcriptional activity. We reveal that a potential molecular abnormality in androgen insensitivity syndrome and CaP patients is caused by disruptions of the important intra-receptor NTD/LBD interaction. We demonstrate that the same AR LBD mutations can also disrupt the recruitment of the p160 coactivator protein GRIP1. Our investigations reveal that 30% of patients with advanced, untreated local CaP have somatic mutations that may lead to increases in AR activity. We report that somatic mutations that activate AR may lead to early relapse in ADT. Our results demonstrate that the types of ADT a CaP patient receives may cause a clustering of mutations to a particular region of the receptor. Furthermore, the mutations that arise before and during ADT do not always result in a receptor that is more active, indicating that coregulator interactions play a pivotal role in the progression of androgen-independent CaP. To improve CaP therapy, it is necessary to identify critical coregulators of AR. We screened a HeLa cell cDNA library and identified small carboxyl-terminal domain phosphatase 2 (SCP2). SCP2 is a protein phosphatase that directly interacts with the AR NTD and represses AR activity. We demonstrated that reducing the endogenous cellular levels of SCP2 causes more AR to load on to the prostate specific antigen (PSA) gene promoter and enhancer regions. Additionally, under the same conditions, more RNA polymerase II was recruited to the PSA promoter region and overall there was an increase in androgen-dependent transcription of the PSA gene, revealing that SCP2 could play a role in the pathogenesis of CaP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MADAM, Androgenetic alopecia (AGA) is a common age-dependent trait, characterized by a progressive loss of hair from the scalp. The hair loss may commence during puberty and up to 80% of white men experience some degree of AGA during their lifetime.1 Research has established that two essential aetiological factors for AGA are a genetic predisposition and the presence of androgens (male sex hormones).1,2 A recent meta-analysis of genome-wide association studies (GWAS) has increased the number of identified loci associated with this trait at the molecular level to a total of eight.3 However, despite these successes, a large fraction of the genetic contribution remains to be identified. One way to identify further genetic loci is to combine the resource of GWAS datasets with knowledge about specific biological factors likely to be involved in the development of disease. The focused evaluation of a limited number of candidate genes in GWAS datasets avoids the necessity for extensive correction for multiple testing, which typically limits the power for detecting genetic loci at a genome-wide level.4 Because the presence of genetic association suggests that candidate genes are likely to operate early in the causative chain of events leading to the phenotype, this approach may also function to favour biological pathways for their importance in the development of AGA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pathogenesis of androgenetic alopecia (AGA, male-pattern baldness) is driven by androgens, and genetic predisposition is the major prerequisite. Candidate gene and genome-wide association studies have reported that single-nucleotide polymorphisms (SNPs) at eight different genomic loci are associated with AGA development. However, a significant fraction of the overall heritable risk still awaits identification. Furthermore, the understanding of the pathophysiology of AGA is incomplete, and each newly associated locus may provide novel insights into contributing biological pathways. The aim of this study was to identify unknown AGA risk loci by replicating SNPs at the 12 genomic loci that showed suggestive association (5 x 10(-8)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Breast cancer is the most common cancer in women in the western countries. Approximately two-thirds of breast cancer tumours are hormone dependent, requiring estrogens to grow. Estrogens are formed in the human body via a multistep route starting from cholesterol. The final steps in the biosynthesis include the CYP450 aromatase enzyme, converting the male hormones androgens (preferred substrate androstenedione ASD) into estrogens(estrone E1), and the 17beta-HSD1 enzyme, converting the biologically less active E1 into the active hormone 17beta-hydroxyestradiol E2. E2 is bound to the nuclear estrogen receptors causing a cascade of biochemical reactions leading to cell proliferation in normal tissue, and to tumour growth in cancer tissue. Aromatase and 17beta-HSD1 are expressed in or near the breast tumour, locally providing the tissue with estrogens. One approach in treating hormone dependent breast tumours is to block the local estrogen production by inhibiting these two enzymes. Aromatase inhibitors are already on the market in treating breast cancer, despite the lack of an experimentally solved structure. The structure of 17beta-HSD1, on the other hand, has been solved, but no commercial drugs have emerged from the drug discovery projects reported in the literature. Computer-assisted molecular modelling is an invaluable tool in modern drug design projects. Modelling techniques can be used to generate a model of the target protein and to design novel inhibitors for them even if the target protein structure is unknown. Molecular modelling has applications in predicting the activities of theoretical inhibitors and in finding possible active inhibitors from a compound database. Inhibitor binding at atomic level can also be studied with molecular modelling. To clarify the interactions between the aromatase enzyme and its substrate and inhibitors, we generated a homology model based on a mammalian CYP450 enzyme, rabbit progesterone 21-hydroxylase CYP2C5. The model was carefully validated using molecular dynamics simulations (MDS) with and without the natural substrate ASD. Binding orientation of the inhibitors was based on the hypothesis that the inhibitors coordinate to the heme iron, and were studied using MDS. The inhibitors were dietary phytoestrogens, which have been shown to reduce the risk for breast cancer. To further validate the model, the interactions of a commercial breast cancer drug were studied with MDS and ligand–protein docking. In the case of 17beta-HSD1, a 3D QSAR model was generated on the basis of MDS of an enzyme complex with active inhibitor and ligand–protein docking, employing a compound library synthesised in our laboratory. Furthermore, four pharmacophore hypotheses with and without a bound substrate or an inhibitor were developed and used in screening a commercial database of drug-like compounds. The homology model of aromatase showed stable behaviour in MDS and was capable of explaining most of the results from mutagenesis studies. We were able to identify the active site residues contributing to the inhibitor binding, and explain differences in coordination geometry corresponding to the inhibitory activity. Interactions between the inhibitors and aromatase were in agreement with the mutagenesis studies reported for aromatase. Simulations of 17beta-HSD1 with inhibitors revealed an inhibitor binding mode with hydrogen bond interactions previously not reported, and a hydrophobic pocket capable of accommodating a bulky side chain. Pharmacophore hypothesis generation, followed by virtual screening, was able to identify several compounds that can be used in lead compound generation. The visualisation of the interaction fields from the QSAR model and the pharmacophores provided us with novel ideas for inhibitor development in our drug discovery project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Defence against pathogens is a vital need of all living organisms that has led to the evolution of complex immune mechanisms. However, although immunocompetence the ability to resist pathogens and control infection has in recent decades become a focus for research in evolutionary ecology, the variation in immune function observed in natural populations is relatively little understood. This thesis examines sources of this variation (environmental, genetic and maternal effects) during the nestling stage and its fitness consequences in wild populations of passerines: the blue tit (Cyanistes caeruleus) and the collared flycatcher (Ficedula albicollis). A developing organism may face a dilemma as to whether to allocate limited resources to growth or to immune defences. The optimal level of investment in immunity is shaped inherently by specific requirements of the environment. If the probability of contracting infection is low, maintaining high growth rates even at the expense of immune function may be advantageous for nestlings, as body mass is usually a good predictor of post-fledging survival. In experiments with blue tits and haematophagous hen fleas (Ceratophyllus gallinae) using two methods, methionine supplementation (to manipulate nestlings resource allocation to cellular immune function) and food supplementation (to increase resource availability), I confirmed that there is a trade-off between growth and immunity and that the abundance of ectoparasites is an environmental factor affecting allocation of resources to immune function. A cross-fostering experiment also revealed that environmental heterogeneity in terms of abundance of ectoparasites may contribute to maintaining additive genetic variation in immunity and other traits. Animal model analysis of extensive data collected from the population of collared flycatchers on Gotland (Sweden) allowed examination of the narrow-sense heritability of PHA-response the most commonly used index of cellular immunocompetence in avian studies. PHA-response is not heritable in this population, but is subject to a non-heritable origin (presumably maternal) effect. However, experimental manipulation of yolk androgen levels indicates that the mechanism of the maternal effect in PHA-response is not in ovo deposition of androgens. The relationship between PHA-response and recruitment was studied for over 1300 collared flycatcher nestlings. Multivariate selection analysis shows that it is body mass, not PHA-response, that is under direct selection. PHA-response appears to be related to recruitment because of its positive relationship with body mass. These results imply that either PHA-response fails to capture the immune mechanisms that are relevant for defence against pathogens encountered by fledglings or that the selection pressure from parasites is not as strong as commonly assumed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sjögren s syndrome (SS) is a common autoimmune disease affecting the lacrimal and salivary glands. SS is characterized by a considerable female predominance and a late age of onset, commonly at the time of adreno- and menopause. The levels of the androgen prohormone dehydroepiandrosterone-sulphate (DHEA-S) in the serum are lower in patients with SS than in age- and sex-matched healthy control subjects. The eventual systemic effects of low androgen levels in SS are not currently well understood. Basement membranes (BM) are specialized layers of extracellular matrix and are composed of laminin (LM) and type IV collagen matrix networks. BMs deliver messages to epithelial cells via cellular LM-receptors including integrins (Int) and Lutheran blood group antigen (Lu). The composition of BMs and distribution of LM-receptors in labial salivary glands (LSGs) of normal healthy controls and patients with SS was assessed. LMs have complex and highly regulated distribution in LSGs. LMs seem to have specific tasks in the dynamic regulation of acinar cell function. LM-111 is important for the normal acinar cell differentiation and its expression is diminished in SS. Also LM-211 and -411 seem to have some acinar specific functional tasks in LSGs. LM-311, -332 and -511 seem to have more general structure maintaining and supporting roles in LSGs and are relatively intact also in SS. Ints α3β1, α6β1, α6β4 and Lu seem to supply structural basis for the firm attachment of epithelial cells to the BM in LSGs. The expression of Ints α1β1 and α2β1 differed clearly from other LM-receptors in that they were found almost exclusively around the acini and intercalated duct cells in salivons suggesting some type of acinar cell compartment-specific or dominant function. Expression of these integrins was lower in SS compared to healthy controls suggesting that the LM-111 and -211-to-Int α1β1 and α2β1 interactions are defective in SS and are crucial to the maintenance of the acini in LSGs. DHEA/DHEA-S concentration in serum and locally in saliva of patients with SS seems to have effects on the salivary glands. These effects were first detected using the androgen-dependent CRISP-3 protein, the production and secretion of which were clearly diminished in SS. This might be due to the impaired function of the intracrine DHEA prohormone metabolizing machinery, which fails to successfully convert DHEA into its active metabolites in LSGs. The progenitor epithelial cells from the intercalated ductal area of LSGs migrate to the acinar compartment and then undergo a phenotype change into secretory acinar cells. This migration and phenotype change seem to be regulated by the LM-111-to-Int α1β1/Int α2β1 interactions. Lack of these interactions could be one factor limiting the normal remodelling process. Androgens are effective stimulators of Int α1β1 and α2β1 expression in physiologic concentrations. Addition of DHEA to the culture medium had effective stimulating effect on the Int α1β1 and α2β1 expression and its effect may be deficient in the LSGs of patients with SS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Androgens and the androgen receptor (AR) play a crucial role in the initiation and progression of prostate cancer (PCa), regulating the expression of many PCa risk-associated genes. Iroquois Homeobox 4 (IRX4) has been recently identified with PCa risk and overexpressed in PCa. We observed a down-regulation of IRX4 expression in the cells undergoing epithelial to mesenchymal transition, suggesting its potential role in PCa progression and aim to delineate the androgenmediated regulation of IRX4 in PCa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The androgen receptor (AR) is the main therapeutic target for advanced prostate cancer (PCa). Current treatments have focused on inhibiting the transcriptional activity of the AR, however androgens can also induce non-genomic effects by facilitating the initiation of kinase signaling cascades in PCa. Cells, including PCa, secrete extracellular vesicles (EV), which are able to mediate communication between cells and can also contribute towards these processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eturauhassyöpä on yksi yleisimmistä syövistä länsimaissa. Eturauhassyöpä on yleensä hitaasti kehittyvä tauti. Edetessään se voi kuitenkin muuntua aggressiivisemmaksi ja aiheuttaa metastaaseja, jotka ovat pääasiallisena syynä taudin kuolleisuuteen. Androgeenit ovat merkittäviä tekijöitä eturauhassyövän patogeneesissä ja eturauhassyöpäkudos on useimmiten riippuvainen androgeeneista. Tämän vuoksi hoidon tavoitteena on estää niiden eritys kirurgisella tai kemiallisella kastraatiolla ja/tai estää androgeenien vaikutus antiandrogeeneilla. Eturauhassyöpää sekä sen hoitoon tarkoitettuja uusia lääkehoitomahdollisuuksia tutkitaan kiivaasti. Eturauhassyövän tutkimiseen on kehitetty lukematon määrä erilaisia in vivo -malleja. Koska eturauhassyöpä on yleensä androgeeneille herkkä, kuvaavat androgeeniresponsiiviset eläinmallit ihmisen tautia parhaiten. Eturauhassyövän mallintamiseen in vivo voidaan käyttää eri eläinlajeja, mutta hiiri on ylivoimaisesti käytetyin mallieläin. Immuunipuutteisiin hiiriin voidaan aiheuttaa kasvaimia inokuloimalla ihmisen kasvainsoluja tai osia ihmisen kasvaimista. Ortotooppisesti eturauhaseen inokuloitavat kasvainmallit mallintavat eturauhassyövässä esiintyvää syöpäsolujen ja stroomasolujen välistä epänormaalia vuorovaikutusta. Muuntogeeniset hiirimallit ovat yhä yleisempiä eturauhassyövän tutkimuksessa. Muuntogeenisilla malleilla voidaan mallintaa taudin kehittymistä ja sen etenemistä kokonaisuudessaan parhaiten. Eturauhasessa olevaa kasvainta ja sen kasvua on vaikea seurata ilman prostataspesifisen antigeenin (PSA) pitoisuuden mittausta tai erityisiä kuvantamistekniikoita. Tällaisia menetelmiä, kuten optista kuvantamista, käytetään yhä enemmän hyödyksi erilaisissa eturauhassyövän in vivo -malleissa. Tutkielman kokeellisen osan tavoitteena oli optimoida bioluminesenssiin perustuva optinen kuvantamismenetelmä androgeeniresponsiivisessa LNCaP-luc2-solulinjassa ortotooppisessa eturauhassyöpämallissa. Bioluminesenssikuvantaminen perustuu kasvainsolujen ilmentämän lusiferaasin katalysoimaan reaktioon, jossa entsyymin substraatti, lusiferiini, hapettuu ja tuottaa näkyvää valoa. Lisäksi tavoitteena oli tutkia lääkehoitojen ja kastraation vasteita mallissa. Bioluminesenssiin perustuvalla kuvantamisella oli mahdollista seurata eturauhaskasvainten kasvua noninvasiivisesti, reaaliaikaisesti ja toistuvasti. Bioluminesenssikuvantamisen avulla kasvainten kvantitointi oli nopeampaa kuin ultraäänikuvantamisen avulla, ja kasvainten kasvua oli myös mahdollista seurata useammin kuin seerumin PSA-mittausten avulla. Bioluminesenssikuvantamisen todettiin korreloivan paremmin PSA-pitoisuuden kanssa kuin kasvaimen todelliseen kokoon lopetushetkellä. Seerumin PSA-pitoisuus korreloi kuitenkin bioluminesenssimittausta paremmin eturauhaskasvaimen kokoon tässä kokeessa. Kasvainten oletettua suurempaa kokoa voidaan pitää todennäköisimpänä syynä sille, ettei lääkehoitojen tai kastraation todettu vaikuttavan kasvainten kasvuun bioluminesenssikuvantamisella mitattuna. Bioluminesenssikuvantaminen ei sovellu suurille eikä nekroottisille kasvaimille, sillä kuvantamismenetelmä toimii vain elävillä soluilla. Bioluminesenssikuvantamisen hyödyntämisen kannalta oleellista tässä mallissa on myös lusiferiini-injektion onnistuminen. Jatkotutkimuksia tarvitaan edelleen mallin validoimiseksi mm. lääkehoitojen vasteiden osoittamiseksi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sjögren s syndrome (SS) is a strongly female dominant autoimmune disease. SS targets mainly salivary and lacrimal glands and leads to loss of the secreting acinar cells of these glands. Accordingly, secretion of the affected glands is diminished and the main symptoms of SS, dryness of mouth and eyes, follow. In addition to these sicca symptoms, SS patients suffer from severe fatigue and can have various extraglandular symptoms. To date, the etiology of SS still remains unknown. Female dominance and the late onset of the disease simultaneously with remarkable hormonal changes in the body (menopause, adrenopause) encouraged us to hypothesize that sex steroids, especially androgens, are involved in the onset and progression of SS. We confirmed our hypothesis and showed that patients with SS suffer from androgen depletion both systemically and locally in the target tissue of SS, salivary glands. We especially focused on the local androgen environment in salivary glands and demonstrated that healthy salivary glands contain a complete enzymatic machinery for local synthesis of androgens and estrogens from pro-hormone dehydroepiandrosterone (DHEA). However, in SS salivary glands the enzymes catalyzing the local androgen synthesis are defective and, in a subgroup of patients, practically non-functional. Probably due to this local defect in DHEA processing, therapy with DHEA was found unbeneficial for SS patients in the treatment of fatigue. We also studied the effect of the local androgen depletion on salivary glands. We found that in salivary gland cells and healthy labial salivary glands androgens upregulate integrin subunits α1 and α2, which are important for the communication, differentiation and function of the acinar cells. On the contrary, in SS salivary glands DHEA failed to upregulate these signaling molecules, again probably due to defective processing of DHEA into active androgens. Our finding highlights the importance of the local androgen environment and local DHEA processing for the function and welfare of salivary glands. In conclusion, this study showed that patients with SS are androgen depleted both systemically and locally in salivary glands. SS patients also have a defective local sex steroid synthesizing enzymatic machinery further impairing the local androgen depletion. We also showed that the local androgen defect leads to decreased expression of acinar cell specific integrin molecules, which impairs the signaling between the acinar cells and basement membrane and might thus explain the acinar cell loss seen in SS salivary glands. By showing the importance of the local sex steroid imbalance in SS we have clarified some etiopathogenetic mechanisms of SS, which have thus far remained unknown.