929 resultados para Oxidase
Resumo:
Nanomaterials-based enzyme mimetics (nanozymes) have attracted considerable interest due to their applications in imaging, diagnostics, and therapeutic treatments. Particularly, metal-oxide nanozymes have been shown to mimic the interesting redox properties and biological activities of metalloenzymes. Here we describe an efficient synthesis of MnFe2O4 nanomaterials and show how the morphology can be controlled by using a simple co-precipitation method. The nanomaterials prepared by this method exhibit a remarkable oxidase-like activity. Interestingly, the activity is morphology-dependent, with nanooctahedra (NOh) exhibiting a catalytic efficiency of 2.21 x 10(9) M-1 s(-1), the highest activity ever reported for a nanozyme.
Resumo:
A modular, general method for trapping enzymes within the voids of paper, without chemical activation of cellulose, is reported. Glucose oxidase and peroxidase were crosslinked with poly(acrylic acid) via carbodiimide chemistry, producing 3-dimensional networks interlocked in cellulose fibers. Interlocking prevented enzyme activity loss and enhanced the washability and stability.
Resumo:
EEnzyme activity of commercial glucose oxidase was enhanced after purification through a strong anionic exchange resin. In order to get a better insight into this phenomenon, surface pressure–area ( –A) isotherms and surface pressure–time ( –t) isotherms was used to study the interaction and the absorption at different pH values of the subphases between octadecylamine and glucose oxidase purified by a styrene system quaternary ammonium type strongly basic anionic exchange resin. Circular dichroism (CD), electrophoresis and enzyme activity measurements were conducted to study these phenomena. A preliminary hypothesis has been suggested to explain why the enzyme activity of purified glucose oxidase was higher than that of the commercial one. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Intramolecular electron transfer in partially reduced cytochrome c oxidase has been studied by means of perturbed equilibrium techniques. We have prepared a three electron reduced, CO inhibited form of the enzyme in which cytochrome a and copper A are partially reduced an in intramolecular redox equilibrium. When these samples were photolyzed using a nitrogen laser (0.6 µs, 1.0 mJ pulses) changes in absorbance at 598 nm and 830 nm were observed which are consistent with a fast electron from cytochrome a to copper A. The absorbance changes at 598 nm have an apparent rate of 17,200 ± 1,700 s^(-1) (1σ), at pH 7.0 and 25.5 °C. These changes were not observed in either the CO mixed valence or CO inhibited fully reduced forms of the enzyme. The rate is fastest at about pH 8.0, and falls off in either direction, and there is a small, but clear temperature dependence. The process was also observed in the cytochrome c -- cytochrome c oxidase high affinity complex.
This rate is far faster than any rate measured or inferred previously for the cytochrome a -- copper A electron equilibration, but the interpretation of these results is hampered by the fact that the relaxation could only be followed during the time before CO became rebound to the oxygen binding site. The meaning of our our measured rate is discussed, along with other reported rates for this process. In addition, a temperature-jump experiment on the same system is discussed.
We have also prepared a partially reduced, cyanide inhibited form of the enzyme in which cytochrome a, copper A and copper B are partially reduced and in redox equilibrium. Warming these samples produced absorbance changes at 605 nm which indicate that cytochrome a was becoming more oxidized, but there were no parallel changes in absorbance at 830 nm as would be expected if copper A was becoming reduced. We concluded that electrons were being redistributed from cytochrome a to copper B. The kinetics of the absorbance changes at 605 nm were investigated by temperature-jump methods. Although a rate could not be resolved, we concluded that the process must occur with an (apparent) rate larger than 10,000 s^(-1).
During the course of the temperature-jump experiments, we also found that non-redox related, temperature dependent absorbance changes in fully reduced CO inhibited cytochrome c oxidase, and in the cyanide mixed valence enzyme, took place with an (apparent) rate faster that 30,000 s^(-1).
Resumo:
Part I: Synthesis of L-Amino Acid Oxidase by a Serine- or Glycine-Requiring Strain of Neurospora
Wild-type cultures of Neurospora crassa growing on minimal medium contain low levels of L-amino acid oxidase, tyrosinase, and nicotinarnide adenine dinucleotide glycohydrase (NADase). The enzymes are derepressed by starvation and by a number of other conditions which are inhibitory to growth. L-amino acid oxidase is, in addition, induced by growth on amino acids. A mutant which produces large quantities of both L-amino acid oxidase and NADase when growing on minimal medium was investigated. Constitutive synthesis of L-amino acid oxidase was shown to be inherited as a single gene, called P110, which is separable from constitutive synthesis of NADase. P110 maps near the centromere on linkage group IV.
L-amino acid oxidase produced constitutively by P110 was partially purified and compared to partially purified L-amino acid oxidase produced by derepressed wild-type cultures. The enzymes are identical with respect to thermostability and molecular weight as judged by gel filtration.
The mutant P110 was shown to be an incompletely blocked auxotroph which requires serine or glycine. None of the enzymes involved in the synthesis of serine from 3-phosphoglyceric acid or glyceric acid was found to be deficient in the mutant, however. An investigation of the free intracellular amino acid pools of P110 indicated that the mutant is deficient in serine, glycine, and alanine, and accumulates threonine and homoserine.
The relationship between the amino acid requirement of P110 and its synthesis of L-amino acid oxidase is discussed.
Part II: Studies Concerning Multiple Electrophoretic Forms of Tyrosinase in Neurospora
Supernumerary bands shown by some crude tyrosinase preparations in paper electrophoresis were investigated. Genetic analysis indicated that the location of the extra bands is determined by the particular T allele present. The presence of supernumerary bands varies with the method used to derepress tyrosinase production, and with the duration of derepression. The extra bands are unstable and may convert to the major electrophoretic band, suggesting that they result from modification of a single protein. Attempts to isolate the supernumerary bands by continuous flow paper electrophoresis or density gradient zonal electrophoresis were unsuccessful.
Resumo:
Part I
Phenol oxidase is the enzyme responsible for hardening and pigmentation of the insect cuticle. In Drosophila, phenol oxidase is a latent enzyme. Enzyme activity is produced by the interaction of a number of protein components. A minimal activation scheme consisting of six protein components, designated Pre S, S activator, S, P. P' and Ʌ1 is described. Quantitative assays have been developed for the S activator, S, P and P' proteins and these components have been partially purified. Experiments describing the interactions of the six components have been conducted and a model for the activation of phenol oxidase in a minimal system is proposed. Possible mechanisms of the reactions between the constituents of the activating system and potential regulatory mechanisms involved in phenol oxidase production and function are discussed.
Part II
A method has been developed for the partial purification of insulin from human serum. A procedure for the determination of the electrophoretic mobility of serum insulin on polyacrylamide gels is described. An electrophoretic analysis of insulin isolated from a normal subject is reported and in addition to a major band, the existence of a number of minor bands of immunoreactive insulin is described. A comparison of the electrophoretic patterns of insulin isolated from normal and diabetic subjects was carried out and indications that differences between them may occur are reported.
Identification of procyanidin A2 as polyphenol oxidase substrate in pericarp tissues of litchi fruit
Inhibitory activities of three annonaceous acetogenins on NADH oxidase of chicken liver mitochondria