A Remarkably Efficient MnFe2O4-based Oxidase Nanozyme
Data(s) |
2016
|
---|---|
Resumo |
Nanomaterials-based enzyme mimetics (nanozymes) have attracted considerable interest due to their applications in imaging, diagnostics, and therapeutic treatments. Particularly, metal-oxide nanozymes have been shown to mimic the interesting redox properties and biological activities of metalloenzymes. Here we describe an efficient synthesis of MnFe2O4 nanomaterials and show how the morphology can be controlled by using a simple co-precipitation method. The nanomaterials prepared by this method exhibit a remarkable oxidase-like activity. Interestingly, the activity is morphology-dependent, with nanooctahedra (NOh) exhibiting a catalytic efficiency of 2.21 x 10(9) M-1 s(-1), the highest activity ever reported for a nanozyme. |
Formato |
application/pdf |
Identificador |
http://eprints.iisc.ernet.in/53318/1/Che_11-1_72_2016.pdf Vernekar, Amit A and Das, Tandrila and Ghosh, Sourav and Mugesh, Govindasamy (2016) A Remarkably Efficient MnFe2O4-based Oxidase Nanozyme. In: CHEMISTRY-AN ASIAN JOURNAL, 11 (1). pp. 72-76. |
Publicador |
WILEY-V C H VERLAG GMBH |
Relação |
http://dx.doi.org/10.1002/asia.201500942 http://eprints.iisc.ernet.in/53318/ |
Palavras-Chave | #Inorganic & Physical Chemistry |
Tipo |
Journal Article PeerReviewed |