996 resultados para Function spaces
Resumo:
The dissociation dynamics of heteronuclear diatomic molecules induced by infrared laser pulses is investigated within the framework of the classical driven Morse oscillator. The interaction between the molecule and the laser field described in the dipole formulation is given by the product of a time-dependent external field with a position-dependent permanent dipole function. The effects of changing the spatial range of the dipole function in the classical dissociation dynamics of large ensembles of trajectories are studied. Numerical calculations have been performed for distinct amplitudes and carrier frequencies of the external pulses and also for ensembles with different initial energies. It is found that there exist a set of values of the dipole range for which the dissociation probability can be completely suppressed. The dependence of the dissociation on the dipole range is explained through the examination of the Fourier series coefficients of the dipole function in the angle variable of the free system. In particular, the suppression of dissociation corresponds to dipole ranges for which the Fourier coefficients associated with nonlinear resonances are null and the chaotic region in the phase space is reduced to thin layers. In this context, it is shown that the suppression of dissociation of heteronuclear molecules for certain frequencies of the external field is a consequence of the finite range of the corresponding permanent dipole. © 2013 American Physical Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper a space X is pseudocompact if it is Tychonoff and every real-valued continuous function on X is bounded. We obtain conditions under which a Tychonoff space is maximal pseudocompact and study conditions under which a regular space is maximal R-closed.
Resumo:
This paper studies the average control problem of discrete-time Markov Decision Processes (MDPs for short) with general state space, Feller transition probabilities, and possibly non-compact control constraint sets A(x). Two hypotheses are considered: either the cost function c is strictly unbounded or the multifunctions A(r)(x) = {a is an element of A(x) : c(x, a) <= r} are upper-semicontinuous and compact-valued for each real r. For these two cases we provide new results for the existence of a solution to the average-cost optimality equality and inequality using the vanishing discount approach. We also study the convergence of the policy iteration approach under these conditions. It should be pointed out that we do not make any assumptions regarding the convergence and the continuity of the limit function generated by the sequence of relative difference of the alpha-discounted value functions and the Poisson equations as often encountered in the literature. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Given a reductive group G acting on an affine scheme X over C and a Hilbert function h: Irr G → N_0, we construct the moduli space M_Ө(X) of Ө-stable (G,h)-constellations on X, which is a common generalisation of the invariant Hilbert scheme after Alexeev and Brion and the moduli space of Ө-stable G-constellations for finite groups G introduced by Craw and Ishii. Our construction of a morphism M_Ө(X) → X//G makes this moduli space a candidate for a resolution of singularities of the quotient X//G. Furthermore, we determine the invariant Hilbert scheme of the zero fibre of the moment map of an action of Sl_2 on (C²)⁶ as one of the first examples of invariant Hilbert schemes with multiplicities. While doing this, we present a general procedure for the realisation of such calculations. We also consider questions of smoothness and connectedness and thereby show that our Hilbert scheme gives a resolution of singularities of the symplectic reduction of the action.
Resumo:
Personal photographs permeate our lives from the moment we are born as they define who we are within our familial group and local communities. Archived in family albums or framed on living room walls, they continue on after our death as mnemonic artifacts referencing our gendered, raced, and ethnic identities. This dissertation examines salient instances of what women “do” with personal photographs, not only as authors and subjects but also as collectors, archivists, and family and cultural historians. This project seeks to contribute to more productive, complex discourse about how women form relationships and engage with the conventions and practices of personal photography. In the first part of this dissertation I revisit developments in the history of personal photography, including the advertising campaigns of the Kodak and Agfa Girls and the development of albums such as the Stammbuch and its predecessor, the carte-de-visite, that demonstrate how personal photography has functioned as a gendered activity that references family unity, sentimentalism for the past, and self-representation within normative familial and dominant cultural groups, thus suggesting its importance as a cultural practice of identity formation. The second and primary section of the dissertation expands on the critical analyses of Gillian Rose, Patricia Holland, and Nancy Martha West, who propose that personal photography, marketed to and taken on by women, double-exposes their gendered identities. Drawing on work by critics such as Deborah Willis, bell hooks, and Abigail Solomon-Godeau, I examine how the reconfiguration, recontextualization, and relocation of personal photographs in the respective work of Christine Saari, Fern Logan, and Katie Knight interrogates and complicates gendered, raced, and ethnic identities and cultural attitudes about them. In the final section of the dissertation I briefly examine select examples of how emerging digital spaces on the Internet function as a site for personal photography, one that both reinscribes traditional cultural formations while offering new opportunities for women for the display and audiencing of identities outside the family.
Resumo:
We quantify the extent to which a supercritical Sobolev mapping can increase the dimension of subsets of its domain, in the setting of metric measure spaces supporting a Poincaré inequality. We show that the set of mappings that distort the dimensions of sets by the maximum possible amount is a prevalent subset of the relevant function space. For foliations of a metric space X defined by a David–Semmes regular mapping Π : X → W, we quantitatively estimate, in terms of Hausdorff dimension in W, the size of the set of leaves of the foliation that are mapped onto sets of higher dimension. We discuss key examples of such foliations, including foliations of the Heisenberg group by left and right cosets of horizontal subgroups.
Resumo:
In this paper, we prove that infinite-dimensional vector spaces of α-dense curves are generated by means of the functional equations f(x)+f(2x)+⋯+f(nx)=0, with n≥2, which are related to the partial sums of the Riemann zeta function. These curves α-densify a large class of compact sets of the plane for arbitrary small α, extending the known result that this holds for the cases n=2,3. Finally, we prove the existence of a family of solutions of such functional equation which has the property of quadrature in the compact that densifies, that is, the product of the length of the curve by the nth power of the density approaches the Jordan content of the compact set which the curve densifies.
Resumo:
We study the continuity of pseudo-differential operators on Bessel potential spaces Hs|p (Rn ), and on the corresponding Besov spaces B^(s,q)p (R ^n). The modulus of continuity ω we use is assumed to satisfy j≥0, ∑ [ω(2−j )Ω(2j )]2 < ∞ where Ω is a suitable positive function.
Resumo:
The concept of the distinguished sets is applied to the investigation of the functionally countable spaces. It is proved that every Baire function on a functionally countable space has a countable image. This is a positive answer to a question of R. Levy and W. D. Rice.
Resumo:
* This work was supported by the CNR while the author was visiting the University of Milan.
Resumo:
We prove that if f is a real valued lower semicontinuous function on a Banach space X and if there exists a C^1, real valued Lipschitz continuous function on X with bounded support and which is not identically equal to zero, then f is Lipschitz continuous of constant K provided all lower subgradients of f are bounded by K. As an application, we give a regularity result of viscosity supersolutions (or subsolutions) of Hamilton-Jacobi equations in infinite dimensions which satisfy a coercive condition. This last result slightly improves some earlier work by G. Barles and H. Ishii.
Resumo:
2000 Mathematics Subject Classification: 44A15, 44A35, 46E30
Resumo:
AMS Subj. Classification: MSC2010: 11F72, 11M36, 58J37