On some solutions of a functional equation related to the partial sums of the Riemann zeta function


Autoria(s): Sepulcre, Juan Matias
Contribuinte(s)

Universidad de Alicante. Departamento de Análisis Matemático

Curvas Alpha-Densas. Análisis y Geometría Local

Data(s)

20/02/2014

20/02/2014

01/01/2014

Resumo

In this paper, we prove that infinite-dimensional vector spaces of α-dense curves are generated by means of the functional equations f(x)+f(2x)+⋯+f(nx)=0, with n≥2, which are related to the partial sums of the Riemann zeta function. These curves α-densify a large class of compact sets of the plane for arbitrary small α, extending the known result that this holds for the cases n=2,3. Finally, we prove the existence of a family of solutions of such functional equation which has the property of quadrature in the compact that densifies, that is, the product of the length of the curve by the nth power of the density approaches the Jordan content of the compact set which the curve densifies.

The author was partially supported by Vicerrectorado de Investigación, Desarrollo e Innovación de la Universidad de Alicante under project GRE11-23.

Identificador

Bulletin of the Korean Mathematical Society. 2014, 51(1): 29-41. doi:10.4134/BKMS.2014.51.1.029

1015-8634 (Print)

2234-3016 (Online)

http://hdl.handle.net/10045/35671

10.4134/BKMS.2014.51.1.029

Idioma(s)

eng

Publicador

Korean Mathematical Society

Relação

http://dx.doi.org/10.4134/BKMS.2014.51.1.029

Direitos

© Korean Mathematical Society. The person using Bulletin of the Korean Mathematical Society Online may use, reproduce, disseminate, or display the open access version of content from this journal for non-commercial purposes.

info:eu-repo/semantics/openAccess

Palavras-Chave #Functional equations #Space-filling curves #Partial sums of the Riemann zeta function #Alpha-dense curves #Property of quadrature #Análisis Matemático
Tipo

info:eu-repo/semantics/article