973 resultados para Boundary value problems
Resumo:
"Contract N7 onr-358, T. O. I., NR-041-032."
Resumo:
We establish maximum principles for second order difference equations and apply them to obtain uniqueness for solutions of some boundary value problems.
Resumo:
This work formulates existence theorems for solutions to two-point boundary value problems on time scales. The methods used include maximum principles, a priori bounds and topological degree theory.
Resumo:
Let f : [0, 1] x R2 -> R be a function satisfying the Caxatheodory conditions and t(1 - t)e(t) epsilon L-1 (0, 1). Let a(i) epsilon R and xi(i) (0, 1) for i = 1,..., m - 2 where 0 < xi(1) < xi(2) < (...) < xi(m-2) < 1 - In this paper we study the existence of C[0, 1] solutions for the m-point boundary value problem [GRAPHICS] The proof of our main result is based on the Leray-Schauder continuation theorem.
Resumo:
We consider the boundary value problems for nonlinear second-order differential equations of the form u '' + a(t)f (u) = 0, 0 < t < 1, u(0) = u (1) = 0. We give conditions on the ratio f (s)/s at infinity and zero that guarantee the existence of solutions with prescribed nodal properties. Then we establish existence and multiplicity results for nodal solutions to the problem. The proofs of our main results are based upon bifurcation techniques. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We consider boundary value problems for nonlinear second order differential equations of the form u + a(t) f(u) = 0, t epsilon (0, 1), u(0) = u(1) = 0, where a epsilon C([0, 1], (0, infinity)) and f : R --> R is continuous and satisfies f (s)s > 0 for s not equal 0. We establish existence and multiplicity results for nodal solutions to the problems if either f(0) = 0, f(infinity) = infinity or f(0) = infinity, f(0) = 0, where f (s)/s approaches f(0) and f(infinity) as s approaches 0 and infinity, respectively. We use bifurcation techniques to prove our main results. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
We investigate the structure of the positive solution set for nonlinear three-point boundary value problems of the form u('') + h(t) f(u) = 0, u(0) = 0, u(1) = lambdau(eta), where eta epsilon (0, 1) is given lambda epsilon (0, 1/n) is a parameter, f epsilon C ([0, infinity), [0, infinity)) satisfies f (s) > 0 for s > 0, and h epsilon C([0, 1], [0, infinity)) is not identically zero on any subinterval of [0, 1]. Our main results demonstrate the existence of continua of positive solutions of the above problem. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A boundary-value problems for almost nonlinear singularly perturbed systems of ordinary differential equations are considered. An asymptotic solution is constructed under some assumption and using boundary functions and generalized inverse matrix and projectors.
Resumo:
Mathematics Subject Classification: 26A33, 31C25, 35S99, 47D07.
Resumo:
MSC 2010: 44A35, 35L20, 35J05, 35J25
Resumo:
Иван Димовски, Юлиан Цанков - Предложено е разширение на принципa на Дюамел. За намиране на явно решение на нелокални гранични задачи от този тип е развито операционно смятане основано върху некласическа двумерна конволюция. Пример от такъв тип е задачата на Бицадзе-Самарски.
Resumo:
Иван Христов Димовски, Юлиан Цанков Цанков - Построени са директни операционни смятания за функции u(x, y, t), непрекъснати в област от вида D = [0, a] × [0, b] × [0, ∞). Наред с класическата дюамелова конволюция, построението използва и две некласически конволюции за операторите ∂2x и ∂2y. Тези три едномерни конволюции се комбинират в една тримерна конволюция u ∗ v в C(D). Вместо подхода на Я. Микусински, основаващ се на конволюционни частни, се развива алтернативен подход с използване на мултипликаторните частни на конволюционната алгебра (C(D), ∗).
Resumo:
Иван Хр. Димовски, Юлиан Ц. Цанков - Предложен е метод за намиране на явни решения на клас двумерни уравнения на топлопроводността с нелокални условия по пространствените променливи. Методът е основан на директно тримерно операционно смятане. Класическата дюамелова конволюция е комбинирана с две некласически конволюции за операторите ∂xx и ∂yy в една тримерна конволюция. Съответното операционно смятане използва мултипликаторни частни. Мултипликаторните частни позволяват да се продължи принципът на Дюамел за пространствените променливи и да се намерят явни решения на разглежданите гранични задачи. Общите разглеждания са приложени в случая на гранични условия от типа на Йонкин. Намерени са експлицитни решения в затворен вид.
Resumo:
The aim of this paper is the numerical treatment of a boundary value problem for the system of Stokes' equations. For this we extend the method of approximate approximations to boundary value problems. This method was introduced by V. Maz'ya in 1991 and has been used until now for the approximation of smooth functions defined on the whole space and for the approximation of volume potentials. In the present paper we develop an approximation procedure for the solution of the interior Dirichlet problem for the system of Stokes' equations in two dimensions. The procedure is based on potential theoretical considerations in connection with a boundary integral equations method and consists of three approximation steps as follows. In a first step the unknown source density in the potential representation of the solution is replaced by approximate approximations. In a second step the decay behavior of the generating functions is used to gain a suitable approximation for the potential kernel, and in a third step Nyström's method leads to a linear algebraic system for the approximate source density. For every step a convergence analysis is established and corresponding error estimates are given.