Nonlocal Boundary Value Problems for Two-Dimensional Potential Equation on a Rectangle


Autoria(s): Dimovski, Ivan; Tsankov, Yulian
Data(s)

18/10/2012

18/10/2012

2010

Resumo

Иван Димовски, Юлиан Цанков - Предложено е разширение на принципa на Дюамел. За намиране на явно решение на нелокални гранични задачи от този тип е развито операционно смятане основано върху некласическа двумерна конволюция. Пример от такъв тип е задачата на Бицадзе-Самарски.

An extension of Duhamel principle, known for evolution equations, is proposed. An operational calculus approach for explicit solution of these problems is developed. A classical example of such BVP is the Bitsadze – Samarskii problem.

1 Partially supported by Project ID_09_0129 ITMSFA with Nat. Sci. Fund. Ministery of Educ. Youth and Sci, Bulgaria. 2 Partially supported by Grand N 132 of NSF of Bulgaria.

Identificador

Union of Bulgarian Mathematicians, Vol. 39, No 1, (2010), 105p-113p

1313-3330

http://hdl.handle.net/10525/1842

Idioma(s)

en

Publicador

Union of Bulgarian Mathematicians

Palavras-Chave #Nonlocal BVP #Right-Inverse Operator #Extended Duamel Principle #Generalized Solution #Convolution #Multiplier #Multipliers Fraction
Tipo

Article