Global behavior of positive solutions of nonlinear three-point boundary value problems
Contribuinte(s) |
L. Lakshmikantham |
---|---|
Data(s) |
01/01/2005
|
Resumo |
We investigate the structure of the positive solution set for nonlinear three-point boundary value problems of the form u('') + h(t) f(u) = 0, u(0) = 0, u(1) = lambdau(eta), where eta epsilon (0, 1) is given lambda epsilon (0, 1/n) is a parameter, f epsilon C ([0, infinity), [0, infinity)) satisfies f (s) > 0 for s > 0, and h epsilon C([0, 1], [0, infinity)) is not identically zero on any subinterval of [0, 1]. Our main results demonstrate the existence of continua of positive solutions of the above problem. (C) 2004 Elsevier Ltd. All rights reserved. |
Identificador | |
Idioma(s) |
eng |
Publicador |
Elsevier |
Palavras-Chave | #Mathematics, Applied #Mathematics #Multi-point Boundary Value Problems #Global Continuation Principle Of Leray-schauder #Continuum #Positive Solutions #Bifurcation #Differential-equations #Eigenvalue Problems #Existence #Uniqueness #C1 #230107 Differential, Difference and Integral Equations #780101 Mathematical sciences |
Tipo |
Journal Article |