912 resultados para cryptic speciation
Resumo:
Speciation on islands is affected by island size and the range of habitats and resources available and often also by limited interactions with other taxa. An ancestral population may evolve into a large number of species via an adaptive radiation. In Madagascar, most groups of animals and plants have radiated on the island, having arrived via oceanic dispersal during the long isolation of Madagascar. Characteristic features of Malagasy biota are exceptionally high level of endemism, high species richness as well as lack of many higher taxa that are dominant on the African mainland. Malagasy dung beetles are dominated by two tribes, Canthonini and Helictopleurina, with more than 250 endemic species. In this thesis I have reconstructed molecular phylogenies for the two tribes using several gene regions and different phylogenetic methods. Evolution of closely related species and among populations of the same species was examined with haplotype networks. The Malagasy Canthonini consists of three large lineages, while Helictopleurina forms a monophyletic group. The ancestors of each of the four clades colonised Madagascar at different times during Cenozoic. The subsequent radiations differ in terms of the number of extant species (from 37 to more than 100) and the level of ecological differentiation. In addition, Onthophagini (6 species) and Scarabaeini (3) have colonised Madagascar several times, but they have not radiated and the few species have not entered forests where Canthonini and Helictopleurina mostly occur. Among the three Canthonini radiations, speciation appears to have been mostly allopatric in the oldest and the youngest clades, while in the Epactoides clade sister species have diverged in their ecologies but have similar geographical distributions, indicating that speciation may have occurred in regional sympatry. The most likely isolating mechanisms have been rivers and forest refugia during dry and cool geological periods. Most species are generalists feeding on both carrion and dung, and competition among ecologically similar species may prevent their coexistence in the same communities. Some species have evolved to forage in the canopy and a few species have shifted to use cattle dung, a new resource in the open habitats following the introduction of cattle 1500 years ago. The latter shift has allowed species to expand their geographical ranges.
Resumo:
Salmonella enterica serovar Typhimurium is a common cause of gastroenteritis in humans and, occasionally, also causes systemic infection. During systemic infection an important characteristic of Salmonella is its ability to survive and replicate within macrophages. The outer membrane protease PgtE of S. enterica is a member of the omptin family of outer membrane aspartate proteases, which are beta-barrel proteins with five surface-exposed loops. The main goals of this study were to characterize biological substrates and pathogenesis-associated functions of PgtE and to determine the conditions where PgtE is fully active. In this study we found that PgtE requires rough lipopolysaccharide (LPS) to be functional but is sterically inhibited by the long O-antigen side chain in smooth LPS. Salmonella isolates normally are smooth with a long oligosaccharide O-antigen, and PgtE remains functionally cryptic in wild-type Salmonella cultivated in vitro. Interestingly, our results showed that due to increased expression of PgtE and to reduced length of the LPS O-antigen chains, the wild-type Salmonella expresses highly functional PgtE when isolated from mouse macrophage-like J774A.1 cells. Salmonella is thought to be continuously released from macrophages to infect new ones, and our results suggest that PgtE is functional during these transient extracellular growth phases. Six novel host protein substrates were identified for PgtE in this work. PgtE was previously known to activate human plasminogen (Plg) to plasmin, a broad-spectrum serine protease, and in this study PgtE was shown to interfere with the Plg system by inactivating the main inhibitor of plasmin, alpha2-antiplasmin. PgtE also interferes with another important proteolytic system of mammals by activating pro-matrix metalloproteinase-9 to an active gelatinase. PgtE also directly degrades gelatin, a component of extracellular matrices. PgtE also increases bacterial resistance against complement-mediated killing in human serum and enhances survival of Salmonella within murine macrophages as well as in the liver and spleen of intraperitoneally infected mice. Taken together, the results in this study suggest that PgtE is a virulence factor of Salmonella that has adapted to interfere with host proteolytic systems and to modify extracellular matrix; these features likely assist the migration of Salmonella during systemic salmonellosis.
Resumo:
Social behaviour affects dispersal of animals and is an important modifier of genetic population structures. The female sex is often philopatric, which maintains coancestry within the breeding groups and promotes cooperative behaviours. This enables also inclusive fitness returns from altruism and explains why some individuals sacrifice personal reproduction for the good of others in social insects such as ants. However, reduced dispersal and population substructuring at the level of colonies may also entail inbreeding, loss of genetic diversity, and vulnerability. In addition, the most vulnerable ants are species that are evolved to parasitize colonies of other ants, and which compromise between abilities to disperse and the efficiency to parasitize the host. On the other hand, certain social organisations of ant colonies may facilitate a species to disperse outside its natural range and become a pest. Altogether, knowledge on genetic structuring of ant populations, as well as the evolution of their life histories can contribute to conservation biology and population management. The aim of this thesis was to investigate population structures and phylogenetic evolution of the ant Plagiolepis pygmaea and its two obligatory, workerless social parasites (inquilines) P. xene and P. grassei with genetic markers and DNA sequence data. The results support the general assumption that populations of inquiline parasites are highly fragmented and genetically vulnerable. Comparison of the two parasites suggests that differences in their relative abundance may follow from their interaction with the host, i.e. how well the species is adapted to reproduce in the host colonies. The results also indicate that the most recent free living ancestor to these two parasite species is their common host. This is considered to provide evidence for the controversial issue of sympatric speciation. Further, given that the level of adaptations to parasitic life history depends on the evolutionary time since the free-living ancestor, the results establish a link between species rarity and its evolutionary age. The populations of the host species P. pygmaea displayed significantly reduced dispersal both among the females (queens) and males, and high levels of inbreeding which may enhance worker altruism. In addition, the queens were found to mate with multiple males. Given the high relatedness between the queens and their mates, this occurs probably for non-genetic reasons, e.g. without benefits associated in genetically more diverse offspring. The results hence caution that the contribution of non-genetic factors to the prevailing mating patterns and genetic population structures should not be underestimated.
Resumo:
Evolutionary genetics incorporates traditional population genetics and studies of the origins of genetic variation by mutation and recombination, and the molecular evolution of genomes. Among the primary forces that have potential to affect the genetic variation within and among populations, including those that may lead to adaptation and speciation, are genetic drift, gene flow, mutations and natural selection. The main challenges in knowing the genetic basis of evolutionary changes is to distinguish the adaptive selection forces that cause existent DNA sequence variants and also to identify the nucleotide differences responsible for the observed phenotypic variation. To understand the effects of various forces, interpretation of gene sequence variation has been the principal basis of many evolutionary genetic studies. The main aim of this thesis was to assess different forms of teleost gene sequence polymorphisms in evolutionary genetic studies of Atlantic salmon (Salmo salar) and other species. Firstly, the level of Darwinian adaptive evolution affected coding regions of the growth hormone (GH) gene during the teleost evolution was investigated based on the sequence data existing in public databases. Secondly, a target gene approach was used to identify within population variation in the growth hormone 1 (GH1) gene in salmon. Then, a new strategy for single nucleotide polymorphisms (SNPs) discovery in salmonid fishes was introduced, and, finally, the usefulness of a limited number of SNP markers as molecular tools in several applications of population genetics in Atlantic salmon was assessed. This thesis showed that the gene sequences in databases can be utilized to perform comparative studies of molecular evolution, and some putative evidence of the existence of Darwinian selection during the teleost GH evolution was presented. In addition, existent sequence data was exploited to investigate GH1 gene variation within Atlantic salmon populations throughout its range. Purifying selection is suggested to be the predominant evolutionary force controlling the genetic variation of this gene in salmon, and some support for gene flow between continents was also observed. The novel approach to SNP discovery in species with duplicated genome fragments introduced here proved to be an effective method, and this may have several applications in evolutionary genetics with different species - e.g. when developing gene-targeted markers to investigate quantitative genetic variation. The thesis also demonstrated that only a few SNPs performed highly similar signals in some of the population genetic analyses when compared with the microsatellite markers. This may have useful applications when estimating genetic diversity in genes having a potential role in ecological and conservation issues, or when using hard biological samples in genetic studies as SNPs can be applied with relatively highly degraded DNA.
Resumo:
Mutation and recombination are the fundamental processes leading to genetic variation in natural populations. This variation forms the raw material for evolution through natural selection and drift. Therefore, studying mutation rates may reveal information about evolutionary histories as well as phylogenetic interrelationships of organisms. In this thesis two molecular tools, DNA barcoding and the molecular clock were examined. In the first part, the efficiency of mutations to delineate closely related species was tested and the implications for conservation practices were assessed. The second part investigated the proposition that a constant mutation rate exists within invertebrates, in form of a metabolic-rate dependent molecular clock, which can be applied to accurately date speciation events. DNA barcoding aspires to be an efficient technique to not only distinguish between species but also reveal population-level variation solely relying on mutations found on a short stretch of a single gene. In this thesis barcoding was applied to discriminate between Hylochares populations from Russian Karelia and new Hylochares findings from the greater Helsinki region in Finland. Although barcoding failed to delineate the two reproductively isolated groups, their distinct morphological features and differing life-history traits led to their classification as two closely related, although separate species. The lack of genetic differentiation appears to be due to a recent divergence event not yet reflected in the beetles molecular make-up. Thus, the Russian Hylochares was described as a new species. The Finnish species, previously considered as locally extinct, was recognized as endangered. Even if, due to their identical genetic make-up, the populations had been regarded as conspecific, conservation strategies based on prior knowledge from Russia would not have guaranteed the survival of the Finnish beetle. Therefore, new conservation actions based on detailed studies of the biology and life-history of the Finnish Hylochares were conducted to protect this endemic rarity in Finland. The idea behind the strict molecular clock is that mutation rates are constant over evolutionary time and may thus be used to infer species divergence dates. However, one of the most recent theories argues that a strict clock does not tick per unit of time but that it has a constant substitution rate per unit of mass-specific metabolic energy. Therefore, according to this hypothesis, molecular clocks have to be recalibrated taking body size and temperature into account. This thesis tested the temperature effect on mutation rates in equally sized invertebrates. For the first dataset (family Eucnemidae, Coleoptera) the phylogenetic interrelationships and evolutionary history of the genus Arrhipis had to be inferred before the influence of temperature on substitution rates could be studied. Further, a second, larger invertebrate dataset (family Syrphidae, Diptera) was employed. Several methodological approaches, a number of genes and multiple molecular clock models revealed that there was no consistent relationship between temperature and mutation rate for the taxa under study. Thus, the body size effect, observed in vertebrates but controversial for invertebrates, rather than temperature may be the underlying driving force behind the metabolic-rate dependent molecular clock. Therefore, the metabolic-rate dependent molecular clock does not hold for the here studied invertebrate groups. This thesis emphasizes that molecular techniques relying on mutation rates have to be applied with caution. Whereas they may work satisfactorily under certain conditions for specific taxa, they may fail for others. The molecular clock as well as DNA barcoding should incorporate all the information and data available to obtain comprehensive estimations of the existing biodiversity and its evolutionary history.
Resumo:
Throughout the history of Linnean taxonomy, species have been described with varying degrees of justification. Many descriptions have been based on only a few ambiguous morphological characters. Moreover, species have been considered natural, well-defined units whereas higher taxa have been treated as disparate, non-existent creations. In the present thesis a few such cases were studied in detail. Often the species-level descriptions were based on only a few specimens and the variation previously thought to be interspecific was found to be intraspecific. In some cases morphological characters were sufficient to resolve the evolutionary relationships between the taxa, but generally more resolution was gained by the addition of molecular evidence. However, both morphological and molecular data were found to be deceptive in some cases. The DNA sequences of morphologically similar specimens were found to differ distinctly in some cases, whereas in other closely related species the morphology of specimens with identical DNA sequences differed substantially. This study counsels caution when evolutionary relationships are being studied utilizing only one source of evidence or a very limited number of characters (e.g. barcoding). Moreover, it emphasizes the importance of high quality data as well as the utilization of proper methods when making scientific inferences. Properly conducted analyses produce robust results that can be utilized in numerous interesting ways. The present thesis considered two such extensions of systematics. A novel hypothesis on the origin of bioluminescence in Elateriformia beetles is presented, tying it to the development of the clicking mechanism in the ancestors of these animals. An entirely different type of extension of systematics is the proposed high value of the white sand forests in maintaining the diversity of beetles in the Peruvian Amazon. White sand forests are under growing pressure from human activities that lead to deforestation. They were found to harbor an extremely diverse beetle fauna and many taxa were specialists living only in this unique habitat. In comparison to the predominant clay soil forests, considerably more elateroid beetles belonging to all studied taxonomic levels (species, genus, tribus, and subfamily) were collected in white sand forests. This evolutionary diversity is hypothesized to be due to a combination of factors: (1) the forest structure, which favors the fungus-plant interactions important for the elateroid beetles, (2) the old age of the forest type favoring survival of many evolutionary lineages and (3) the widespread distribution and fragmentation of the forests in the Miocene, favoring speciation.
Resumo:
The bgl operon of Escherichia coil is transcriptionally inactive in wild-type cells. DNA insertion sequences (IS) constitute a major class of spontaneous mutations that activate the cryptic bgl promoter. In an attempt to study the molecular mechanism of activation mediated by insertion sequences, transcription of the bgl promoter was carried out in vitro. Stimulation of transcription is observed when a plasmid containing an insertionally activated bgl promoter is used as a template in the absence of proteins other than RNA polymerase. Deletions that remove sequences upstream of the bgl promoter, and insertion of a 1.2 kb DNA fragment encoding resistance to kanamycin, activate the promoter. Point mutations within a region of dyad symmetry upstream of the promoter, which has the potential to extrude into a cruciform structure under torsional stress, also lead to activation, Introduction of a sequence with dyad symmetry, upstream of an activated bgl promoter carrying a deletion of upstream sequences, results in a fourfold reduction in transcription, These results suggest that the cryptic nature of the bgl promoter is because of the presence of DNA structural elements near the promoter that negatively affect transcription.
Resumo:
Mobile genetic elements constitute a remarkably diverse group of nonessential selfish genes that provide no apparent function to the host. These selfish genes have been implicated in host extinction, speciation and architecture of genetic systems. Homing endonucleases, encoded by the open reading frames embedded in introns or inteins of mobile genetic elements, possess double-stranded DNA-specific endonuclease activity. They inflict sequence-specific double-strand breaks at or near the homing site in intron- or intein-less allele. Subsequently, through nonreciprocal exchange the insertion sequence (intron or intein) is transferred from an intein- or intron-containing allele to an intein- or intron-less allele. The components of host double-strand break repair pathway are thought to finish the "homing" process. Several lines of evidence suggest that homing endonucleases are capable of promoting transposition into ectopic sites within or across genomes for their survival as well as dispersal in natural populations. The occurrence of inteins at high frequencies serves as instructive models for understanding the mechanistic aspects of the process of homing and its evolution. This review focuses on genetic, biochemical, structural, and phylogenetic aspects of homing endonucleases, and their comparison with restriction endonucleases.
Resumo:
In Saccharomyces cerevisiae, transcriptional silencing occurs at the cryptic mating-type loci (HML and HMR), telomeres, and ribosomal DNA ( rDNA; RDN1). Silencing in the rDNA is unusual in that polymerase II (Pol II) promoters within RDN1 are repressed by Sir2 but not Sir3 or Sir4. rDNA silencing unidirectionally spreads leftward, but the mechanism of limiting its spreading is unclear. We searched for silencing barriers flanking the left end of RDN1 by using an established assay for detecting barriers to HMR silencing. Unexpectedly, the unique sequence immediately adjacent to RDN1, which overlaps a prominent cohesin binding site (CARL2), did not have appreciable barrier activity. Instead, a fragment located 2.4 kb to the left, containing a tRNA(Gln) gene and the Ty1 long terminal repeat, had robust barrier activity. The barrier activity was dependent on Pol III transcription of tRNA(Gln), the cohesin protein Smc1, and the SAS1 and Gcn5 histone acetyltransferases. The location of the barrier correlates with the detectable limit of rDNA silencing when SIR2 is overexpressed, where it blocks the spreading of rDNA heterochromatin. We propose a model in which normal Sir2 activity results in termination of silencing near the physical rDNA boundary, while tRNA(Gln) blocks silencing from spreading too far when nucleolar Sir2 pools become elevated.
Resumo:
Alum-impregnated activated alumina (AIAA) was investigated in the present work as an adsorbent for the removal of As(V) from water by batch mode. Adsorption study at different pH values shows that the efficiency of AIAA is much higher than as such activated alumina and is suitable for treatment of drinking water. The adsorption isotherm experiments indicated that the uptake of As(V) increased with increasing As(V) concentration from 1 to 25 mg/l and followed Langmuir-type adsorption isotherm. Speciation diagram shows that in the pH range of 2.8–11.5, arsenate predominantly exists as H2AsO4− and HAsO42− species and hence it is presumed that these are the major species being adsorbed on the surface of AIAA. Intraparticle diffusion and kinetic studies revealed that adsorption of As(V) was due to physical adsorption as well as through intraparticle diffusion. Effect of interfering ions revealed that As(V) sorption is strongly influenced by the presence of phosphate ion. The presence of arsenic on AIAA is depicted from zeta potential measurement, scanning electron microscopy (SEM) and energy-dispersive analysis of X-ray (EDAX) mapping study. Alum-impregnated activated alumina successfully removed As(V) to below 40 ppb (within the permissible limit set by WHO) from water, when the initial concentration of As(V) is 10 mg/l.
Resumo:
In recent reports, adolescents and young adults (AYA) with acute lymphoblastic leukemia (ALL) have had a better outcome with pediatric treatment than with adult protocols. ALL can be classified into biologic subgroups according to immunophenotype and cytogenetics, with different clinical characteristics and outcome. The proportions of the subgroups are different in children and adults. ALL subtypes in AYA patients are less well characterized. In this study, the treatment and outcome of ALL in AYA patients aged 10-25 years in Finland on pediatric and adult protocols was retrospectively analyzed. In total, 245 patients were included. The proportions of biologic subgroups in different age groups were determined. Patients with initially normal or failed karyotype were examined with oligonucleotide microarray-based comparative genomic hybridization (aCGH). Also deletions and instability of chromosome 9p were screened in ALL patients. In addition, patients with other hematologic malignancies were screened for 9p instability. aCGH data were also used to determine a gene set that classifies AYA patients at diagnosis according to their risk of relapse. Receiver operating characteristic analysis was used to assess the value of the set of genes as prognostic classifiers. The 5-year event-free survival of AYA patients treated with pediatric or adult protocols was 67% and 60% (p=0.30), respectively. White blood cell count larger than 100x109/l was associated with poor prognosis. Patients treated with pediatric protocols and assigned to an intermediate-risk group fared significantly better than those of the pediatric high-risk or adult treatment groups. Deletions of 9p were detected in 46% of AYA ALL patients. The chromosomal region 9p21.3 was always affected, and the CDKN2A gene was always deleted. In about 15% of AYA patients, the 9p21.3 deletion was smaller than 200 kb in size, and therefore, probably undetectable with conventional methods. Deletion of 9p was the most common aberration of AYA ALL patients with initially normal karyotype. Instability of 9p, defined as multiple separate areas of copy number loss or homozygous loss within a larger heterozygous area in 9p, was detected in 19% (n=27) of ALL patients. This abnormality was restricted to ALL; none of the patients with other hematologic malignancies had the aberration. The prognostic model identification procedure resulted in a model of four genes: BAK1, CDKN2B, GSTM1, and MT1F. The copy number profile combinations of these genes differentiated between AYA ALL patients at diagnosis depending on their risk of relapse. Deletions of CDKN2B and BAK1 in combination with amplification of GSTM1 and MT1F were associated with a higher probability of relapse. Unlike all previous studies, we found that the outcome of AYA patients with ALL treated using pediatric or adult therapeutic protocols was comparable. The success of adult ALL therapy emphasizes the benefit of referral of patients to academic centers and adherence to research protocols. 9p deletions and instability are common features of ALL and may act together with oncogene-activating translocations in leukemogenesis. New and more sensitive methods of molecular cytogenetics can reveal previously cryptic genetic aberrations with an important role in leukemic development and prognosis and that may be potential targets of therapy. aCGH also provides a viable approach for model design aiming at evaluation of risk of relapse in ALL.
Resumo:
Herbivorous insects, their host plants and natural enemies form the largest and most species-rich communities on earth. But what forces structure such communities? Do they represent random collections of species, or are they assembled by given rules? To address these questions, food webs offer excellent tools. As a result of their versatile information content, such webs have become the focus of intensive research over the last few decades. In this thesis, I study herbivore-parasitoid food webs from a new perspective: I construct multiple, quantitative food webs in a spatially explicit setting, at two different scales. Focusing on food webs consisting of specialist herbivores and their natural enemies on the pedunculate oak, Quercus robur, I examine consistency in food web structure across space and time, and how landscape context affects this structure. As an important methodological development, I use DNA barcoding to resolve potential cryptic species in the food webs, and to examine their effect on food web structure. I find that DNA barcoding changes our perception of species identity for as many as a third of the individuals, by reducing misidentifications and by resolving several cryptic species. In terms of the variation detected in food web structure, I find surprising consistency in both space and time. From a spatial perspective, landscape context leaves no detectable imprint on food web structure, while species richness declines significantly with decreasing connectivity. From a temporal perspective, food web structure remains predictable from year to year, despite considerable species turnover in local communities. The rate of such turnover varies between guilds and species within guilds. The factors best explaining these observations are abundant and common species, which have a quantitatively dominant imprint on overall structure, and suffer the lowest turnover. By contrast, rare species with little impact on food web structure exhibit the highest turnover rates. These patterns reveal important limitations of modern metrics of quantitative food web structure. While they accurately describe the overall topology of the web and its most significant interactions, they are disproportionately affected by species with given traits, and insensitive to the specific identity of species. As rare species have been shown to be important for food web stability, metrics depicting quantitative food web structure should then not be used as the sole descriptors of communities in a changing world. To detect and resolve the versatile imprint of global environmental change, one should rather use these metrics as one tool among several.
Resumo:
The queenless ponerine ant Diacamma ceylonense and a population of Diacamma from the Nilgiri hills which we refer to as `nilgiri', exhibit interesting similarities as well as dissimilarities. Molecular phylogenetic study of these morphologically almost similar taxa has shown that D ceylonense is closely related to `nilgiri' and indicates that `nilgiri' is a recent diversion in the Diacamma phylogenetic tree. However, there is a striking behavioural difference in the way reproductive monopoly is maintained by the respective gamergates (mated egg laying workers), and there is evidence that they are genetically differentiated, suggesting a lack of gene flow To develop a better understanding of the mechanism involved in speciation of Diacamma, we have analysed karyotypes of D. ceylonense and `nilgiri' In both, we found surprising inter-individual and intra-individual karyotypic mosaicism. The observed numerical variability, both at intra-individual and inter-individual levels, does not appear to have hampered the sustainability of the chromosomal diversity in each population under study Since the related D. indicum, displays no such intra-individual or inter-Individual variability whatsoever under identical experimental conditions, these results are unlikely to he artifacts. Although no known mechanisms can account for the observed karyotypic variability of this nature, we believe that the present findings on the ants under study would provide opportunities for exciting new discoveries concerning the origin, maintenance and significance of intra-individual and inter-individual karyotypic mosaicism.
Resumo:
Myeloproliferative neoplasms (MPN) and myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic disorders whose etiology and molecular pathogenesis are poorly understood. During the past decade, enormous developments in microarray technology and bioinformatics methods have made it possible to mine novel molecular alterations in a large number of malignancies, including MPN and MDS, which has facilitated the detection of new prognostic, predictive and therapeutic biomarkers for disease stratification. By applying novel microarray techniques, we profiled copy number alterations and microRNA (miRNA) expression changes in bone marrow aspirate and blood samples. In addition, we set up and validated an miRNA expression test for bone marrow core biopsies in order to utilize the large archive material available in many laboratories. We also tested JAK2 mutation status and compare it with the in vitro growth pattern of hematologic progenitors cells. In the study focusing on 100 MPN cases, we detected a Janus kinase 2 (JAK2) mutation in 71 cases. We observed spontaneous erythroid colony growth in all mutation-positive cases in addition to nine mutation negative cases. Interestingly, seven JAK2V167F negative ET cases showed spontaneous megakaryocyte colony formation, one case of which also harbored a myeloproliferative leukemia virus oncogene (MPL) mutation. We studied copy number alterations in 35 MPN and 37 MDS cases by using oligonucleotide-based array comparative hybridization (array CGH). Only one essential thrombocythemia (ET) case presented copy number alterations in chromosomes 1q and 13q. In contrast, MDS cases were characterized by numerous novel cryptic chromosomal aberrations with the most common copy number losses at 5q21.3q33.1 and 7q22.1q33, while the most common copy number gain was trisomy 8. As for the study of the bone marrow core biopsy samples, we showed that even though these samples were embedded in paraffin and underwent decalcification, they were reliable sources of miRNA and suitable for array expression analysis. Further, when studying the miRNA expression profiles of the 19 MDS cases, we found that, compared to controls, two miRNAs (one human Epstein-Barr virus (miR-BART13) miRNA and one human (has-miR-671-5p) miRNA) were downregulated, whereas two other miRNAs (hsa-miR-720 and hsa-miR-21) were upregulated. However, we could find no correlation between copy number alterations and microRNA expression when integrating these two data. This thesis brings to light new information about genomic changes implicated in the development of MPN and MDS, and also underlines the power of applying genome-wide array screening techniques in neoplasias. Rapid advances in molecular techniques and the integration of different genomic data will enable the discovery of the biological contexts of many complex disorders, including myeloid neoplasias.
Resumo:
This paper presents a numerical simulation of the well-documented, fluid-controlled Kabbal and Ponmudi type gneiss-chamockite transformations in southern India using a free energy minimization method. The computations have considered all the major solid phases and important fluid species in the rock - C-O-H and rock - C-O-H-N systems. Appropriate activity-composition relations for the solid solutions and equations of state for the fluids have been included in order to evaluate the mineral-fluid equilibria attending the incipient chamockite development in the gneisses. The C-O-H fluid speciation pattern in both the Kabbal and Ponmudi type systems indicates that CO2 and H2O make up the bulk of the fluid phase with CO, CH4, H-2 and O2 as minor constituents. In the graphite-buffered Ponmudi-system, the abundance of CO, CH4 and H-2 is orders of magnitude higher than that in the graphite-free Kabbal system. Simulation with C-O-H-N fluids of varying composition demonstrates the complementary role of CO2 and N2 as rather inert dilutants of H2O in the fluid phase. The simulation, carried out on available whole-rock data, has demonstrated the dependence of the transformation X(H2O) on P,T, and phase and chemical composition of the precursor gneiss.