878 resultados para aircraft coating, paint degradation, fourier transform infrared, profluorescent nitroxide
Resumo:
Hydrogenated silicon (Si:H) films near the threshold of crystallinity were prepared by very high-frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) using a wide range of hydrogen dilution R-H = [H-2]/[SiH4] values of 2-100. The effects of H dilution R-H on the structural properties of the films were investigated using micro-Raman scattering and Fourier transform infrared (FTIR) absorption spectroscopy. The obtained Raman spectra show that the H dilution leads to improvements in the short-range order and the medium-range order of the amorphous network and then to the morphological transition from amorphous to crystalline states. The onset of this transition locates between R-H = 30 and 40 in our case, and with further increasing R-H from 40 to 100, the nanocrystalline volume fraction increases from similar to23% to 43%, and correspondingly the crystallite size enlarges from similar to2.8 to 4.4 nm. The FTIR spectra exhibit that with R-H increasing, the relative intensities of both the SiH stretching mode component at 2100 cm(-1) and wagging mode component at 620 cm(-1) increase in the same manner. We assert that these variations in IR spectra should be associated with the formation of paracrystalline structures in the low H dilution films and nanocrystalline structures in the high H dilution films. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A set of a-SiOx:H (0.52 < x < 1.58) films are fabricated by plasma-enhanced-chemical-vapor-deposition (PECVD) method at the substrate temperature of 250degreesC. The microstructure and local bonding configurations of the films are investigated in detail using micro-Raman scattering, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). It is found that the films are structural inhomogeneous, with five phases of Si, Si2O:H, SiO:H, Si2O3:H and SiO2 that coexist. The phase of Si is composed of nonhydrogenated amorphous silicon (a-Si) clusters that are spatially isolated. The average size of the clusters decreases with the increasing oxygen concentration x in the films. The results indicate that the structure of the present films can be described by a multi-shell model, which suggests that a-Si cluster is surrounded in turn by the subshells Of Si2O:H, SiO:H, Si2O3:H, and SiO2.
Resumo:
Silicon-rich silicon oxide (SRSO) films are prepared by plasma-enhanced chemical vapor deposition method at the substrate temperature of 200degreesC. The effect of rapid thermal annealing and hydrogen plasma treatment on tire microstructure and light-emission of SRSO films are investigated in detail using micro-Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy and photoluminescence (PL) spectra. It is found that the phase-separation degree of the films decreases with increasing annealing temperature from 300 to 600degreesC, while it increases with increasing annealing temperature from 600 to 900degreesC. The light-emission of the films are enhanced with increasing annealing temperature up to 500degreesC, while it is rapidly reduced when the annealing temperature exceeds 600degreesC. The peak position of the PL spectrum blueshifts by annealing at the temperature of 300degreesC, then it red-shifts with further raising annealing temperature. The following hydrogen plasma treatment results in a disproportionate increase of the PL intensity and a blueshift or redshift of the peak positions, depending on the pristine annealing temperature. It is thought that the size of amorphous silicon clusters, surface structure of the clusters and the distribution of hydrogen in the films can be changed during the annealing procedure. The results indicate that not only cluster size but also surface state of the clusters plays an important role in the determination of electronic structure of the amorphous silicon cluster and recombination process of light-generated carriers.
Resumo:
Tungsten wires were introduced into a plasma-enhanced chemical vapor deposition (PECVD) system as a catalyzer: we name this technique 'hot-wire-assisted PECVD' (HW-PECVD). Under constant deposition pressure (p(g)), gas flow ratio and catalyzer position, the effects of the hot wire temperature (T-f) on the structural properties of the poly-Si films have been characterized by X-ray diffraction (XRD), Raman scattering and Fourier-transform infrared (FTIR) spectroscopy. Compared with conventional PECVD, the grain size, crystalline volume fraction (X-e) and deposition rate were all enhanced when a high T-f was used. The best poly-Si film exhibits a preferential (220) orientation, with a full width at half-maximum (FWHM) of 0.2 degrees. The Si-Si TO peak of the Raman scattering spectrum is located at 519.8 cm(-1) with a FWHM of 7.1 cm(-1). The X-c is 0.93. These improvements are mainly the result of promotion of the dissociation of SiH4 and an increase in the atomic H concentration in the gas phase. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Hydrogen behavior in unintentionally doped GaN epilayers on sapphire substrates grown by NH3-MBE is investigated. Firstly, we find by using nuclear reaction analysis (NRA) that with increasing hydrogen concentration the background electron concentration increases, which suggests that there exists a hydrogen-related donor in undoped GaN, Secondly, Fourier transform infrared (FTIR) absorption and X-ray photoelectron spectroscopy (XPS) reveal Further that hydrogen atom is bound to nitrogen atom in GaN with a local vibrational mode at about 3211 cm(-1) Hence, it is presumed that the hydrogen-related complex Ga. . .H-N is a hydrogen-related donor candidate partly responsible for high n-type background commonly observed in GaN films. Finally, Raman spectroscopy results of the epilayers show that ill addition to the expected compressive biaxial strain, in some cases GaN films suffer from serious tensile biaxial strain. This anomalous behavior has been well interpreted in terms of interstitial hydrogen lattice dilation. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A series of systematic experiments on the growth of high quality GaNAs strained layers on GaAs (001) substrate have been carried out by using DC active Nz plasma, assisted molecular beam epitaxy. The samples of GaNAs between 3 and 200 nm thick were evaluated by double crystal X-ray diffraction (XRD) and photoluminescence (PL) measurements. PL and XRD measurements for these samples are in good agreement. Some material growth and structure parameters affecting the properties of GaNAs/GaAs heterostructure were studied; they were: (1) growth temperature of GaNAs epilayer; (2) electrical current of active N-2 plasma; (3) Nz flow rate; (4) GaNAs growth rate; (5) the thickness of GaNAs strained layer. XRD and PL measurements showed that superlattice with distinct satellite peaks up to two orders and quantum well structure with intensity at 22 meV Fourier transform infrared spectroscopy (FWHM) can be achieved in molecular beam epitaxy (MBE) system. (C) 2000 Published by Elsevier Science S.A. All rights reserved.
Resumo:
A pronounced photoluminescence enhancement on chemically oxidized porous silicon was induced by a series of organic cyano compounds including 1,2-dicyanoethylene (CE), 1,3-dicyanobenzene (1,3-CB), 1,4-dicyanobenzene (1,4-CB), 1-cyanonaphthalene (1-CN), and 9-cyanoanthracene (9-CA). Photoluminescence enhancement effects were reversible for all compounds studies in this work. A dependence of photoluminescence enhancement on the steric effect and the electronic characteristics of these compounds and the structure of the porous silicon substrates were analyzed in terms of the photoluminescence enhancing factors. Surface chemical composition examined by Fourier transform infrared (FTIR) spectra demonstrated that the surface Si-H bonds were not changed and no new luminescent compounds were formed on porous silicon surface during adsorption of cyano compounds. A mechanism based on induced surface states acting as radiative recombination centers by cyano compounds adsorption was suggested.
Resumo:
GaN nanorods with vertebra-like morphology were synthesized by nitriding Ga2O3/ZnO films at 1000 degrees C for 20min. Ga2O3 thin films and ZnO middle layers were pre-deposited in turn on Si(111) substrates by r.f. magnetron sputtering system. In the flowing ammonia ambient, ZnO was reducted to Zn and Zu sublimated at 1000 degrees C. Ga2O3 was reducted to Ga2O and Ga2O reacted with NH3 to synthesize GaN nanorods in the help of the sublimation of Zn. The structure and morphology of the nanorods were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM), The composition of GaN nanorods was studied by energy dispersive spectroscopy (EDS) and fourier transform infrared (FTIR) system.
Resumo:
A series of amorphous silicon carbide films were prepared by plasma enhanced chemical vapor deposition technique on (100) silicon wafers by using methane, silane, and hydrogen as reactive resources. A very thin (around 15 A) gold film was evaporated on the half area of the aSiC:H films to investigate the metal induced crystallization effect. Then the a-SiC:H films were annealed at 1100 degrees C for 1 hour in the nitrogen atmosphere. Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to analyze the microstructure, composition and surface morphology of the films. The influences of the high temperature annealing on the microstructure of a-SiC:H film and the metal induced metallization were investigated.
Resumo:
Si thin films with different structures were deposited by plasma enhanced chemical vapor deposition (PECVD), and characterized via Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The passivation effect of such different Si thin films on crystalline Si surface was investigated by minority carrier lifetime measurement via a method, called microwave photoconductive decay (mu PCD), for the application in HIT (heterojunction with intrinsic thin-layer) solar cells. The results show that amorphous silicon (a-Si:H) has a better passivation effect due to its relative higher H content, compared with microcrystalline (mu c-Si) silicon and nanocrystalline silicon (nc-Si). Further, it was found that H atoms in the form of Si-H bonds are more preferred than those in the form of Si-H-2 bonds to passivate the crystalline Si surface. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Nano-vanadium dioxide thin films were prepared through thermal annealing vanadium oxide thin films deposited by dual ion beam sputtering. The nano-vanadium dioxide thin films changed its state from semiconductor phase to metal phase through heating by homemade system. Four point probe method and Fourier transform infrared spectrum technology were employed to measure and anaylze the electrical and optical semiconductor-to-metal phase transition properties of nano-vanadium dioxide thin films, respectively. The results show that there is an obvious discrepancy between the semiconductor-to-metal phase transition properties of electrical and optical phase transition. The nano-vanadium dioxide thin films' phase transiton temperature defined by electrical phase transiton property is 63 degrees C, higher than that defined by optical phase transiton property at 5 mu m, 60 degrees C; and the temperature width of electrical phase transition duration is also wider than that of optical phase transiton duration. The semiconductor-to-metal phase transiton temperature defined by optical properties increases with increasing wavelength in the region of infrared wave band, and the occuring temperature of phase transiton from semiconductor to metal also increases with wavelength increasing, but the duration temperature width of transition decreases with wavelength increasing. The phase transition properties of nano-vanadium dioxide thin film has obvious relationship with wavelength in infrared wave band. The phase transition properties can be tuned through wavelength in infrared wave band, and the semiconductor-to-metal phase transition properties of nano vanadiium dioxide thin films can be better characterized by electrical property.
Resumo:
Lattice matched Ga_(1-x)In_xAs_ySb_(1-y) quaternary alloy films for thermophotovoltaic cells were successfully grown on n-type GaSb substrates by liquid phase epitaxy. Mirror-like surfaces for the epitaxial layers were achieved and evaluated by atomic force microscopy. The composition of the Ga_(1-x)In_xAs_ySb_(1-y) layer was characterized by energy dispersive X-ray analysis with the result that x = 0.2, y = 0.17. The absorption edges of the Ga_(1-x)In_xAs_ySb_(1-y) films were determined to be 2. 256μm at room temperature by Fourier transform infrared transmission spectrum analysis, corresponding to an energy gap of 0.55eV. Hall measurements show that the highest obtained electron mobility in the undoped p-type samples is 512cm2~/(V·s) and the carrier density is 6. 1×10~(16)cm~(-3) at room temperature. Finally, GaInAsSb based thermophotovoltaic cells in different structures with quantum efficiency values of around 60% were fabricated and the spectrum response characteristics of the cells are discussed.
Resumo:
The principle of step-scan Fourier transform infrared (FTIR) spectroscopy is introduced. Double modulation step-scan FTIR technique is used to obtain the quantum cascade laser's stacked emission spectra in the time domain. Optical property and thermal accumulation of devices due to large drive current are analyzed.
Resumo:
In this study, silicon nanocrystals embedded in SiO2 matrix were formed by conventional plasma enhanced chemical vapor deposition (PECVD) followed by high temperature annealing. The formation of silicon nanocrystals (nc-Si), their optical and micro-structural properties were studied using various experimental techniques, including Fourier transform infrared spectroscopy, micro-Raman spectra, high resolution transmission electron microscopy and x-ray photoelectron spectroscopy. Very strong red light emission from silicon nanocrystals at room temperature (RT) was observed. It was found that there is a strong correlation between the PL intensity and the substrate temperature, the oxygen content and the annealing temperature. When the substrate temperature decreases from 250degreesC to RT, the PL intensity increases by two orders of magnitude.
Resumo:
SiOx films with oxygen concentrations ranging 13-46 at.% were deposited by plasma enhanced chemical vapor deposition (PECVD) technique using: pure SiH4 and N2O mixture. Erbium was then implanted at an energy of 500 KeV with dose of 2x10(15) ions/cm(2). The samples were subsequently annealed in N-2 for 20 sec at temperatures of (300-950 degrees C). Room temperature (RT) photo-luminescence (PL) data were collected by Fourier Transform Infrared Spectroscopy (FTIS) with an argon laser at a wavelength of 514.5 nm and an output power from 5 to 2500 mw. The intense room-temperature luminescence was observed around 1.54 mu m. The luminescence intensity increases by 2 orders of magnitude as compared with that of Er-doped Czochralski (CZ) Si. We found that the Er3+ luminescence depends strongly on the SiOx microstructure. Our experiment also showed that the silicon grain radius decreased with increasing oxygen content and finally formed micro-crystalline silicon or nano-crystalline silicon. As a result, these silicon small particles could facilitate the energy transfer to Er3+ and thus enhanced the photoluminescence intensity.