894 resultados para Averaging operators
Resumo:
We discuss some necessary and some sufficient conditions for an elementary operator x↦∑ni=1aixbi on a Banach algebra A to be spectrally bounded. In the case of length three, we obtain a complete characterisation when A acts irreducibly on a Banach space of dimension greater than three.
Resumo:
Let A be a unital dense algebra of linear mappings on a complex vector space X. Let φ = Σn i=1 Mai,bi be a locally quasi-nilpotent elementary operator of length n on A. We show that, if {a1, . . . , an} is locally linearly independent, then the local dimension of V (φ) = span{biaj : 1 ≤ i, j ≤ n} is at most n(n−1) 2 . If ldim V (φ) = n(n−1) 2 , then there exists a representation of φ as φ = Σn i=1 Mui,vi with viuj = 0 for i ≥ j. Moreover, we give a complete characterization of locally quasinilpotent elementary operators of length 3.
Resumo:
Properties of elementary operators, that is, finite sums of two-sided multiplications on a Banach algebra, have been studied under a vast variety of aspects by numerous authors. In this paper we review recent advances in a new direction that seems not to have been explored before: the question when an elementary operator is spectrally bounded or spectrally isometric. As with other investigations, a number of subtleties occur which show that elementary operators are still not elementary to handle.
Resumo:
We numerically analyse the behavior of the full distribution of collective observables in quantum spin chains. While most of previous studies of quantum critical phenomena are limited to the first moments, here we demonstrate how quantum fluctuations at criticality lead to highly non-Gaussian distributions. Interestingly, we show that the distributions for different system sizes collapse on thesame curve after scaling for a wide range of transitions: first and second order quantum transitions and transitions of the Berezinskii–Kosterlitz–Thouless type. We propose and analyse the feasibility of an experimental reconstruction of the distribution using light–matter interfaces for atoms in optical lattices or in optical resonators.
Resumo:
We prove that a semigroup generated by finitely many truncated convolution operators on $L_p[0, 1]$ with 1 ≤ p < ∞ is non-supercyclic. On the other hand, there is a truncated convolution operator, which possesses irregular vectors.
Resumo:
Recently, Bès, Martin, and Sanders [11] provided examples of disjoint hypercyclic operators which fail to satisfy the Disjoint Hypercyclicity Criterion. However, their operators also fail to be disjoint weakly mixing. We show that every separable, infinite dimensional Banach space admits operators T1,T2,…,TN with N⩾2 which are disjoint weakly mixing, and still fail to satisfy the Disjoint Hypercyclicity Criterion, answering a question posed in [11]. Moreover, we provide examples of disjoint hypercyclic operators T1, T2 whose corresponding set of disjoint hypercyclic vectors is nowhere dense, answering another question posed in [11]. In fact, we explicitly describe their set of disjoint hypercyclic vectors. Those same disjoint hypercyclic operators fail to be disjoint topologically transitive. Lastly, we create examples of two families of d-hypercyclic operators which fail to have any d-hypercyclic vectors in common.
Resumo:
In this paper we study eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator $\Delta_+^{(\alpha,\beta,\gamma)}:= D_{x_0^+}^{1+\alpha} +D_{y_0^+}^{1+\beta} +D_{z_0^+}^{1+\gamma},$ where $(\alpha, \beta, \gamma) \in \,]0,1]^3$, and the fractional derivatives $D_{x_0^+}^{1+\alpha}$, $D_{y_0^+}^{1+\beta}$, $D_{z_0^+}^{1+\gamma}$ are in the Riemann-Liouville sense. Applying operational techniques via two-dimensional Laplace transform we describe a complete family of eigenfunctions and fundamental solutions of the operator $\Delta_+^{(\alpha,\beta,\gamma)}$ in classes of functions admitting a summable fractional derivative. Making use of the Mittag-Leffler function, a symbolic operational form of the solutions is presented. From the obtained family of fundamental solutions we deduce a family of fundamental solutions of the fractional Dirac operator, which factorizes the fractional Laplace operator. We apply also the method of separation of variables to obtain eigenfunctions and fundamental solutions.
Resumo:
Mobile network coverage is traditionally provided by outdoor macro base stations, which have a long range and serve several of customers. Due to modern passive houses and tightening construction legislation, mobile network service is deteriorated in many indoor locations. Typically, solutions for indoor coverage problem are expensive and demand actions from the mobile operator. Due to these, superior solutions are constantly researched. The solution presented in this thesis is based on Small Cell technology. Small Cells are low power access nodes designed to provide voice and data services.. This thesis concentrates on a specific Small Cell solution, which is called a Pico Cell. The problem regarding Pico Cells and Small Cells in general is that they are a new technological solution for the mobile operator, and the possible problem sources and incidents are not properly mapped. The purpose of this thesis is to figure out the possible problems in the Pico Cell deployment and how they could be solved within the operator’s incident management process. The research in the thesis is carried out with a literature research and a case study. The possible problems are investigated through lab testing. Pico Cell automated deployment process was tested in the lab environment and its proper functionality is confirmed. The related network elements were also tested and examined, and the emerged problems are resolvable. Operators existing incident management process can be used for Pico Cell troubleshooting with minor updates. Certain pre-requirements have to be met before Pico Cell deployment can be considered. The main contribution of this thesis is the Pico Cell integrated incident management process. The presented solution works in theory and solves the problems found during the lab testing. The limitations in the customer service level were solved by adding the necessary tools and by designing a working question pattern. Process structures for automated network discovery and pico specific radio parameter planning were also added for the mobile network management layer..
Resumo:
In this paper, by using the method of separation of variables, we obtain eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator defined via fractional Caputo derivatives. The solutions are expressed using the Mittag-Leffler function and we show some graphical representations for some parameters. A family of fundamental solutions of the corresponding fractional Dirac operator is also obtained. Particular cases are considered in both cases.
Resumo:
We consider a natural representation of solutions for Tikhonov functional equations. This will be done by applying the theory of reproducing kernels to the approximate solutions of general bounded linear operator equations (when defined from reproducing kernel Hilbert spaces into general Hilbert spaces), by using the Hilbert-Schmidt property and tensor product of Hilbert spaces. As a concrete case, we shall consider generalized fractional functions formed by the quotient of Bergman functions by Szegö functions considered from the multiplication operators on the Szegö spaces.
Resumo:
We obtain invertibility and Fredholm criteria for the Wiener-Hopf plus Hankel operators acting between variable exponent Lebesgue spaces on the real line. Such characterizations are obtained via the so-called even asymmetric factorization which is applied to the Fourier symbols of the operators under study.
Resumo:
We extend previous papers in the literature concerning the homogenization of Robin type boundary conditions for quasilinear equations, in the case of microscopic obstacles of critical size: here we consider nonlinear boundary conditions involving some maximal monotone graphs which may correspond to discontinuous or non-Lipschitz functions arising in some catalysis problems.
Resumo:
Let E and F be Banach spaces. A linear operator from E to F is said to be strictly singular if, for any subspace Q aS, E, the restriction of A to Q is not an isomorphism. A compactness criterion for any strictly singular operator from L (p) to L (q) is found. There exists a strictly singular but not superstrictly singular operator on L (p) , provided that p not equal 2.
Resumo:
A Hilbert space operator is called universal (in the sense of Rota) if every operator on the Hilbert space is similar to a multiple of the restriction of the universal operator to one of its invariant subspaces. We exhibit an analytic Toeplitz operator whose adjoint is universal in the sense of Rota and commutes with a quasi-nilpotent injective compact operator with dense range. In particular, this new universal operator invites an approach to the Invariant Subspace Problem that uses properties of operators that commute with the universal operator.