Locally quasi-nilpotent elementary operators
Data(s) |
2014
|
---|---|
Resumo |
Let A be a unital dense algebra of linear mappings on a complex vector space X. Let φ = Σ<sup>n</sup> <sub>i</sub>=1 M<sub>ai</sub>,<sub>bi</sub> be a locally quasi-nilpotent elementary operator of length n on A. We show that, if {a1, . . . , an} is locally linearly independent, then the local dimension of V (φ) = span{b<sub>i</sub>a<sub>j</sub> : 1 ≤ i, j ≤ n} is at most n(n−1) 2 . If ldim V (φ) = n(n−1) 2 , then there exists a representation of φ as φ = Σ<sup>n</sup> <sub>i</sub>=1 M<sub>ui</sub>,<sub>vi</sub> with v<sub>i</sub>u<sub>j</sub> = 0 for i ≥ j. Moreover, we give a complete characterization of locally quasinilpotent elementary operators of length 3. |
Formato |
application/pdf |
Identificador |
http://dx.doi.org/10.7153/oam-08-44 http://pure.qub.ac.uk/ws/files/58974342/Boudi_Mathieu_final_OM.pdf |
Idioma(s) |
eng |
Direitos |
info:eu-repo/semantics/openAccess |
Fonte |
Boudi , N & Mathieu , M 2014 , ' Locally quasi-nilpotent elementary operators ' Operators and Matrices , vol 8 , no. 3 , pp. 785-798 . DOI: 10.7153/oam-08-44 |
Palavras-Chave | #Elementary operator, quasi-nilpotent, locally linearly independent. |
Tipo |
article |